We investigate the global persistence properties of critical systems relaxing
from an initial state with non-vanishing value of the order parameter (e.g.,
the magnetization in the Ising model). The persistence probability of the
global order parameter displays two consecutive regimes in which it decays
algebraically in time with two distinct universal exponents. The associated
crossover is controlled by the initial value m_0 of the order parameter and the
typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo
simulations of the two-dimensional Ising model with Glauber dynamics display
clearly this crossover. The measured exponent of the ultimate algebraic decay
is in rather good agreement with our theoretical predictions for the Ising
universality class.Comment: 5 pages, 2 figure