501 research outputs found

    Epstein-Barr Virus-Encoded BARF1 Protein is a Decoy Receptor for Macrophage Colony Stimulating Factor and Interferes with Macrophage Differentiation and Activation

    Get PDF
    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinoma

    The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system

    Get PDF
    Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid

    Premature ventricular contractions originating from the left ventricular septum: Results of Radiofrequency Catheter Ablation in twenty patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RFCA has been established as an effective and curative therapy for severely symptomatic PVC from the outflow tract in structurally normal hearts. However, it is unknown whether PVCs originating from the left ventricular septum, are effectively eliminated by RFCA. This study aimed to investigate electrophysiologic characteristics and effects of Radiofrequency catheter ablation (RFCA) for patients with symptomatic premature ventricular contraction (PVC) originating from the left ventricular septum without including fascicular PVCs.</p> <p>Methods</p> <p>Characteristics of body surface electrocardiogram (ECG) and electrophysiologic recordings endocardiogram in a successful RFCA target were analyzed in 20 patients with symptomatic PVCs originating from the left ventricular septum. RFCA was performed using pace mapping and activation mapping.</p> <p>Results</p> <p>The QRS morphology of PVCs originating from the left ventricular septum is similar to that seen in fascicular tachycardia. Most of the PVCs originated from the left septum appears in the form of ventricular parasystole. The incidence of ventricular parasystole was 70%. Sustained ventricular tachycardia was not inducible by electrical stimulation and isoproterenol infusion in all 20 patients, ablation at the site recording the earliest Purkinje potential was not effective in all 20 patients, and Purkinje potentials were not identified at successful sites during point mapping. Sixteen patients were successful with RFCA using pace mapping and activation mapping, 3 failed, and 1 recurrent.</p> <p>Conclusion</p> <p>Although the ECG characteristics of the PVCs arising from the left ventricular septum are similar to that seen in fascicular tachycardia, the electrophysiologic characteristics are different between the two types of PVCs. The distinguishing characteristic of the PVCs is that Purkinje potentials were not present at the site of successful ablation, suggesting a myocardial as opposed to fascicular substrate. RFCA is an effective curative therapy for symptomatic PVCs originating from the left ventricular septum (not from the left anterior and posterior fascicle).</p

    ADH1B Arg47His Polymorphism Is Associated with Esophageal Cancer Risk in High-Incidence Asian Population: Evidence from a Meta-Analysis

    Get PDF
    with ESCC in Asian populations under a common ancestry scenario of the susceptibility loci, we combined all available studies into a meta-analysis.. Heterogeneity among studies and their publication bias were also tested. can bring more risk to ESCC (OR  = 13.46, 95% CI: 2.32–78.07). allele

    Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells

    Get PDF
    Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC

    Nucleosomes Correlate with In Vivo Progression Pattern of De Novo Methylation of p16 CpG Islands in Human Gastric Carcinogenesis

    Get PDF
    BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP) assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC) samples (36/40) was significantly higher than that observed in gastritis (19/45) or normal samples (7/13) (P<0.01). Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01). In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo

    SLC39A6: A potential target for diagnosis and therapy of esophageal carcinoma

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is a highly lethal cancer, and its underlying molecular mechanisms are poorly understood. Recent large-scale genome-wide association studies in Chinese Han populations have identified an ESCC susceptibility locus within the SLC39A6 gene. Here, we sought to explore the expression and biological function of SLC39A6 in ESCC. Methods: Multiethnic validation of SLC39A6 protein expression was performed in different cohorts of patients from Chinese Han and Kazakh populations in the Xinjiang region by immunohistochemistry. The associations among SLC39A6 expression, clinicopathological parameters, and prognosis outcomes of ESCC were analyzed. And the effects of SLC39A6 silencing by siRNA on cell proliferation, apoptosis, and invasiveness, as well as the proteins involved in epithelial-to-mesenchymal transition (EMT) of esophageal cancer cells, were studied. Results: SLC39A6 protein expression increased progressively from normal esophageal epithelium (NEE) to low-grade intraepithelial neoplasia to ESCC, and finally reached the highest in high-grade intraepithelial neoplasia from Han ethnic. Similarly, SLC39A6 protein was significantly overexpressed in Kazakh ethnic ESCC compared with that in NEE. Increased expression of SLC39A6 was found to be closely correlated with histological grade and early Tumor-Node-Metastasis stage I/II. High tumorous SLC39A6 expression was significantly correlated with shorter overall survival (OS). Cox regression analysis confirmed that SLC39A6 expression was an independent prognostic factor for poor OS in ESCC. Experimentally, the suppression of SLC39A6 expression promoted ESCC cell apoptosis but abrogated proliferation and invasion, and induced an EMT phenotype that included enhanced expression of E-cadherin, loss of vimentin, and morphological changes in ESCC cells in vitro. Conclusions: Combined, our findings highlight a tumor-promoting role for SLC39A6 in ESCC, suggesting that SLC39A6 could serve as an early detector of high-risk subjects and prognostic biomarker. The targeting of SLC39A6 might be a potential therapeutic strategy for blocking ESCC

    A First Generation Microsatellite- and SNP-Based Linkage Map of Jatropha

    Get PDF
    Jatropha curcas is a potential plant species for biodiesel production. However, its seed yield is too low for profitable production of biodiesel. To improve the productivity, genetic improvement through breeding is essential. A linkage map is an important component in molecular breeding. We established a first-generation linkage map using a mapping panel containing two backcross populations with 93 progeny. We mapped 506 markers (216 microsatellites and 290 SNPs from ESTs) onto 11 linkage groups. The total length of the map was 1440.9 cM with an average marker space of 2.8 cM. Blasting of 222 Jatropha ESTs containing polymorphic SSR or SNP markers against EST-databases revealed that 91.0%, 86.5% and 79.2% of Jatropha ESTs were homologous to counterparts in castor bean, poplar and Arabidopsis respectively. Mapping 192 orthologous markers to the assembled whole genome sequence of Arabidopsis thaliana identified 38 syntenic blocks and revealed that small linkage blocks were well conserved, but often shuffled. The first generation linkage map and the data of comparative mapping could lay a solid foundation for QTL mapping of agronomic traits, marker-assisted breeding and cloning genes responsible for phenotypic variation

    6G Network AI Architecture for Everyone-Centric Customized Services

    Get PDF
    Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system's overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions
    corecore