458 research outputs found

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans

    No association between germline allele-specific expression of TGFBR1 and colorectal cancer risk in Caucasian and Ashkenazi populations

    Get PDF
    Background: germline allele-specific expression (ASE) of the TGFBR1 gene has been reported as a strong risk factor for colorectal cancer (CRC) with an odds ratio close to 9. Considering the potential implications of the finding, we undertook the task of validating the initial results in this study. Methods: allele-specific expression was measured using the highly quantitative and robust technique of pyrosequencing. Individuals from two different populations were studied, one Caucasian-dominated and the other of Ashkenazi Jewish descent, with different sources of non-tumoral genetic material in each. Results: our results showed no statistically significant differences in the degree of ASE between CRC patients and controls, considering ASE as either a quantitative or a binary trait. Using defined cutoff values to categorise ASE, 1.0% of blood lymphocytes from informative Israeli cases (total n=96) were ASE positive (median 1.00; range 0.76-1.31) and 2.2% of informative matched controls (total n=90) were ASE positive (median 1.00; range 0.76-1.87). Likewise, normal mucosae from Spanish patients (median 1.03; range: 0.68-1.43; n=75) did not show significant differences in the degree of ASE when compared with the Israeli patients or controls. Conclusions: taken together, these results suggest that ASE of TGFBR1 does not confer an increased risk of CRC

    On the Relationship between the Conditional and Unconditional Distribution of a Random Variable

    Get PDF
    This paper studies the relationship between the unconditional and conditional distribution of the same random variable, say Y, when the distribution of the conditioning random variable X is of a known form. The problem is tackled in the general case where the distribution of Y and Y given X are mixed. Attention is focused to two particular cases. In the first X is assumed to follow a Poisson distribution; in the second X is allowed to have a mixed Poisson form. Potential applications are also discusse

    Transforming healthcare through regenerative medicine

    Get PDF
    Regenerative medicine therapies, underpinned by the core principles of rejuvenation, regeneration and replacement, are shifting the paradigm in healthcare from symptomatic treatment in the 20th century to curative treatment in the 21st century. By addressing the reasons behind the rapid expansion of regenerative medicine research and presenting an overview of current clinical trials, we explore the potential of regenerative medicine to reshape modern healthcare

    miRNA Expression in Colon Polyps Provides Evidence for a Multihit Model of Colon Cancer

    Get PDF
    Changes in miRNA expression are a common feature in colon cancer. Those changes occurring in the transition from normal to adenoma and from adenoma to carcinoma, however, have not been well defined. Additionally, miRNA changes among tumor subgroups of colon cancer have also not been adequately evaluated. In this study, we examined the global miRNA expression in 315 samples that included 52 normal colonic mucosa, 41 tubulovillous adenomas, 158 adenocarcinomas with proficient DNA mismatch repair (pMMR) selected for stage and age of onset, and 64 adenocarcinomas with defective DNA mismatch repair (dMMR) selected for sporadic (n = 53) and inherited colon cancer (n = 11). Sporadic dMMR tumors all had MLH1 inactivation due to promoter hypermethylation. Unsupervised PCA and cluster analysis demonstrated that normal colon tissue, adenomas, pMMR carcinomas and dMMR carcinomas were all clearly discernable. The majority of miRNAs that were differentially expressed between normal and polyp were also differentially expressed with a similar magnitude in the comparison of normal to both the pMMR and dMMR tumor groups, suggesting a stepwise progression for transformation from normal colon to carcinoma. Among the miRNAs demonstrating the largest fold up- or down-regulated changes (≥4), four novel (miR-31, miR-1, miR-9 and miR-99a) and two previously reported (miR-137 and miR-135b) miRNAs were identified in the normal/adenoma comparison. All but one of these (miR-99a) demonstrated similar expression differences in the two normal/carcinoma comparisons, suggesting that these early tumor changes are important in both the pMMR- and dMMR-derived cancers. The comparison between pMMR and dMMR tumors identified four miRNAs (miR-31, miR-552, miR-592 and miR-224) with statistically significant expression differences (≥2-fold change)

    Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology.

    Get PDF
    To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression
    corecore