30 research outputs found

    Malaria vector research and control in Haiti: a systematic review

    Get PDF
    BACKGROUND: Haiti has a set a target of eliminating malaria by 2020. However, information on malaria vector research in Haiti is not well known. This paper presents results from a systematic review of the literature on malaria vector research, bionomics and control in Haiti. METHODS: A systematic search of literature published in French, Spanish and English languages was conducted in 2015 using Pubmed (MEDLINE), Google Scholar, EMBASE, JSTOR WHOLIS and Web of Science databases as well other grey literature sources such as USAID, and PAHO. The following search terms were used: malaria, Haiti, Anopheles, and vector control. RESULTS: A total of 132 references were identified with 40 high quality references deemed relevant and included in this review. Six references dealt with mosquito distribution, seven with larval mosquito ecology, 16 with adult mosquito ecology, three with entomological indicators of malaria transmission, eight with insecticide resistance, one with sero-epidemiology and 16 with vector control. In the last 15 years (2000–2015), there have only been four published papers and three-scientific meeting abstracts on entomology for malaria in Haiti. Overall, the general literature on malaria vector research in Haiti is limited and dated. DISCUSSION: Entomological information generated from past studies in Haiti will contribute to the development of strategies to achieve malaria elimination on Hispaniola. However it is of paramount importance that malaria vector research in Haiti is updated to inform decision-making for vector control strategies in support of malaria elimination

    A Genome-Wide Survey of Switchgrass Genome Structure and Organization

    Get PDF
    The perennial grass, switchgrass (Panicum virgatum L.), is a promising bioenergy crop and the target of whole genome sequencing. We constructed two bacterial artificial chromosome (BAC) libraries from the AP13 clone of switchgrass to gain insight into the genome structure and organization, initiate functional and comparative genomic studies, and assist with genome assembly. Together representing 16 haploid genome equivalents of switchgrass, each library comprises 101,376 clones with average insert sizes of 144 (HindIII-generated) and 110 kb (BstYI-generated). A total of 330,297 high quality BAC-end sequences (BES) were generated, accounting for 263.2 Mbp (16.4%) of the switchgrass genome. Analysis of the BES identified 279,099 known repetitive elements, >50,000 SSRs, and 2,528 novel repeat elements, named switchgrass repetitive elements (SREs). Comparative mapping of 47 full-length BAC sequences and 330K BES revealed high levels of synteny with the grass genomes sorghum, rice, maize, and Brachypodium. Our data indicate that the sorghum genome has retained larger microsyntenous regions with switchgrass besides high gene order conservation with rice. The resources generated in this effort will be useful for a broad range of applications

    Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways

    No full text
    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells

    CD137 Facilitates the Resolution of Acute DSS-Induced Colonic Inflammation in Mice

    Get PDF
    Abstract Background CD137 and its ligand (CD137L) are potent immunoregulatory molecules that influence activation, proliferation, differentiation and cell death of leukocytes. Expression of CD137 is upregulated in the lamina propria cells of Crohn’s disease patients. Here, the role of CD137 in acute Dextran-Sodium-Sulfate (DSS)-induced colitis in mice was examined. Methods We induced acute large bowel inflammation (colitis) via DSS administration in CD137−/− and wild-type (WT) mice. Colitis severity was evaluated by clinical parameters (weight loss), cytokine secretion in colon segment cultures, and scoring of histological inflammatory parameters. Additionally, populations of lamina propria mononuclear cells (LPMNC) and intraepithelial lymphocytes (IEL) were characterized by flow cytometry. In a subset of mice, resolution of intestinal inflammation was evaluated 3 and 7 days after withdrawal of DSS. Results We found that both CD137−/− and WT mice demonstrated a similar degree of inflammation after 5 days of DSS exposure. However, the resolution of colonic inflammation was impaired in the absence of CD137. This was accompanied by a higher histological score of inflammation, and increased release of the pro-inflammatory mediators granulocyte macrophage colony-stimulating factor (GM-CSF), CXCL1, IL-17 and IFN-γ. Further, there were significantly more neutrophils among the LPMNC of CD137−/− mice, and reduced numbers of macrophages among the IEL. Conclusion We conclude that CD137 plays an essential role in the resolution of acute DSS-induced intestinal inflammation in mice
    corecore