35 research outputs found

    Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania.

    Get PDF
    BACKGROUND\ud \ud Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania.\ud \ud METHODS\ud \ud Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre), underneath the outdoor kitchen (kibanda) roof and from a drop-net. Data were analysed with generalized linear models.\ud \ud RESULTS\ud \ud The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519). The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more user-friendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre.\ud \ud CONCLUSIONS\ud \ud The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting catches are recommended

    An Estimation of the Entomological Inoculation Rate for Ifakara: A Semi-Urban Area in a Region of Intense Malaria Transmission in Tanzania.

    Get PDF
    An entomological study on vectors of malaria and their relative contribution to Plasmodium falciparum transmission in the semi-urban area of Ifakara, south-eastern Tanzania, was conducted. A total of 32 houses were randomly sampled from the area and light trap catches (LTC) performed in one room in each house every 2 weeks for 1 year. A total of 147 448 mosquitoes were caught from 789 LTC; 26 134 Anopheles gambiae s.l., 615 A. funestus, 718 other anophelines and 119 981 culicines. More than 60% of the total A. gambiae s.l. were found in five (0.6%) LTCs, with a maximum of 5889 caught in a single trap. Of 505 A. gambiae s.l. speciated by polymerase chain reaction, 91.5% were found to be A. arabiensis. Plasmodium falciparum sporozoite enzyme-linked immunosorbent assay tests were performed on 10 108 anopheles mosquitoes and 39 (0.38%) were positive. Entomological inoculation rate (EIR) estimates were generated using a standard method and an alternative method that allows the calculation of confidence intervals based on a negative binomial distribution of sporozoite positive mosquitoes. Overall EIR estimates were similar; 31 vs. 29 [95% confidence interval (CI): 19, 44] infectious bites per annum, respectively. The EIR ranged from 4 (95% CI: 1, 17) in the cool season to 108 (95% CI: 69, 170) in the wet season and from 54 (95% CI: 30, 97) in the east of the town to 15 (95% CI: 8, 30) in the town centre. These estimates show large variations over short distances in time and space. They are all markedly lower than those reported from nearby rural areas and for other parts of Tanzania

    Advantages and Limitations of Commercially Available Electrocuting Grids for Studying Mosquito Behaviour.

    Get PDF
    Mosquito feeding behaviour plays a major role in determining malaria transmission intensity and the impact of specific prevention measures. Human Landing Catch (HLC) is currently the only method that can directly and consistently measure the biting rates of anthropophagic mosquitoes, both indoors and outdoors. However, this method exposes the participant to mosquito-borne pathogens, therefore new exposure-free methods are needed to replace it. Commercially available electrocuting grids (EGs) were evaluated as an alternative to HLC using a Latin Square experimental design in Dar es Salaam, Tanzania. Both HLC and EGs were used to estimate the proportion of human exposure to mosquitoes occurring indoors (πi), as well as its two underlying parameters: the proportion of mosquitoes caught indoors (Pi) and the proportion of mosquitoes caught between the first and last hour when most people are indoors (Pfl). HLC and EGs methods accounted for 69% and 31% of the total number of female mosquitoes caught respectively and both methods caught more mosquitoes outdoors than indoors. Results from the gold standard HLC suggest that An. gambiae s.s. in Dar es Salaam is neither exophagic nor endophagic (Pi ≈ 0.5), whereas An. arabiensis is exophagic (Pi < < 0.5). Both species prefer to feed after 10 pm when most people are indoors (Pfl > >0.5). EGs yielded estimates of Pi for An. gambiae s.s., An. arabiensis and An. coustani, that were approximately equivalent to those with HLC but significantly underestimated Pfl for An. gambiae s.s. and An. coustani. The relative sampling sensitivity of EGs declined over the course of the night (p ≤ 0.001) for all mosquito taxa except An. arabiensis. Commercial EGs sample human-seeking mosquitoes with high sensitivity both indoors and outdoors and accurately measure the propensity of Anopheles malaria vectors to bite indoors rather than outdoors. However, further modifications are needed to stabilize sampling sensitivity over a full nocturnal cycle so that they can be used to survey patterns of human exposure to mosquitoes

    Acquisition of naturally occurring antibody responses to recombinant protein domains of Plasmodium falciparum erythrocyte membrane protein 1

    Get PDF
    Background: Antibodies targeting variant antigens expressed on the surface of Plasmodium falciparum infected erythrocytes have been associated with protection from clinical malaria. The precise target for these antibodies is unknown. The best characterized and most likely target is the erythrocyte surface-expressed variant protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Methods: Using recombinant proteins corresponding to five domains of the expressed A4 var gene, A4 PfEMP1, the naturally occurring antibody response was assessed, by ELISA, to each domain in serum samples obtained from individuals resident in two communities of differing malaria transmission intensity on the Kenyan coast. Using flow cytometry, the correlation in individual responses to each domain with responses to intact A4-infected erythrocytes expressing A4 PfEMP1 on their surface as well as responses to two alternative parasite clones and one clinical isolate was assessed. Results: Marked variability in the prevalence of responses between each domain and between each transmission area was observed, as wasa strong correlation between age and reactivity with some but not all domains. Individual responses to each domain varied strikingly, with some individuals showing reactivity to all domains and others with no reactivity to any, this was apparent at all age groups. Evidence for possible cross-reactivity in responses to the domain DBL4γ was found. Conclusion: Individuals acquire antibodies to surface expressed domains of a highly variant protein. The finding of potential cross-reactivity in responses to one of these domains is an important initial finding in the consideration of potential vaccine targets

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Comparative evaluation of the Ifakara tent trap-B, the standardized resting boxes and the human landing catch for sampling malaria vectors and other mosquitoes in urban Dar es Salaam, Tanzania

    Get PDF
    BACKGROUND\ud \ud Frequent, sensitive and accurate sampling of Anopheles mosquitoes is a prerequisite for effective management of malaria vector control programmes. The most reliable existing means to measure mosquito density is the human landing catch (HLC). However, the HLC technique raises major ethical concerns because of the necessity to expose humans to vectors of malaria and a variety of other pathogens. Furthermore, it is a very arduous undertaking that requires intense supervision, which is severely limiting in terms of affordability and sustainability.\ud \ud METHODS\ud \ud A community-based, mosquito sampling protocol, using the Ifakara tent trap-B (ITT-B) and standardized resting boxes (SRB), was developed and evaluated in terms of the number and sample composition of mosquitoes caught by each, compared to rigorously controlled HLC. Mosquitoes were collected once and three times every week by the HLC and the alternative methods, respectively, in the same time and location.\ud \ud RESULTS\ud \ud Overall, the three traps caught 44,848 mosquitoes. The ITT-B, HLC and SRB caught 168, 143 and 46 Anopheles gambiae s.l. as well as 26,315, 13,258 and 4,791 Culex species respectively. The ITT-B was three- and five-times cheaper than the HLC per mosquito caught for An. gambiae and Cx. Species, respectively. Significant correlations between the numbers caught by HLC and ITT-B were observed for both An. gambiae s.l. (P < 0.001) and Cx. species (P = 0.003). Correlation between the catches with HLC and SRB were observed for Cx. species (P < 0.001) but not An. gambiae s.l. (P = 0.195), presumably because of the low density of the latter. Neither ITT-B nor SRB exhibited any obvious density dependence for sampling the two species.\ud \ud CONCLUSION\ud \ud SRBs exhibited poor sensitivity for both mosquito taxa and are not recommended in this setting. However, this protocol is affordable and effective for routine use of the ITT-B under programmatic conditions. Nevertheless, it is recommended that the trap and the protocol be evaluated further at full programmatic scales to establish effectiveness under fully representative conditions of routine practice

    Standardizing Operational Vector Sampling Techniques for Measuring Malaria Transmission Intensity: Evaluation of six Mosquito Collection Methods in Western Kenya.

    Get PDF
    Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC in western Kenya to 1) identify appropriate methods for operational sampling in this region, and 2) contribute to a larger, overarching project comparing standardized evaluations of vector trapping methods across multiple countries. Mosquitoes were collected from June to July 2009 in four districts: Rarieda, Kisumu West, Nyando, and Rachuonyo. In each district, all trapping methods were rotated 10 times through three houses in a 3 × 3 Latin Square design. Anophelines were identified by morphology and females classified as fed or non-fed. Anopheles gambiae s.l. were further identified as Anopheles gambiae s.s. or Anopheles arabiensis by PCR. Relative catch rates were estimated by negative binomial regression. When data were pooled across all four districts, catch rates (relative to HLC indoor) for An. gambiae s.l (95.6% An. arabiensis, 4.4% An. gambiae s.s) were high for HLC outdoor (RR = 1.01), CDC-LT (RR = 1.18), and ITT (RR = 1.39); moderate for WET (RR = 0.52) and PRT outdoor (RR = 0.32); and low for all remaining types of resting traps (PRT indoor, BRT indoor, and BRT outdoor; RR < 0.08 for all). For Anopheles funestus, relative catch rates were high for ITT (RR = 1.21); moderate for HLC outdoor (RR = 0.47), CDC-LT (RR = 0.69), and WET (RR = 0.49); and low for all resting traps (RR < 0.02 for all). At finer geographic scales, however, efficacy of each trap type varied from district to district. ITT, CDC-LT, and WET appear to be effective methods for large-scale vector sampling in western Kenya. Ultimately, choice of collection method for operational surveillance should be driven by trap efficacy and scalability, rather than fine-scale precision with respect to HLC. When compared with recent, similar trap evaluations in Tanzania and Zambia, these data suggest that traps which actively lure host-seeking females will be most useful for surveillance in the face of declining vector densities

    A simple method for defining malaria seasonality

    Get PDF
    BACKGROUND: There is currently no standard way of defining malaria seasonality, resulting in a wide range of definitions reported in the literature. Malaria cases show seasonal peaks in most endemic settings, and the choice and timing for optimal malaria control may vary by seasonality. A simple approach is presented to describe the seasonality of malaria, to aid localized policymaking and targeting of interventions. METHODS: A series of systematic literature reviews were undertaken to identify studies reporting on monthly data for full calendar years on clinical malaria, hospital admission with malaria and entomological inoculation rates (EIR). Sites were defined as having 'marked seasonality' if 75% or more of all episodes occurred in six or less months of the year. A 'concentrated period of malaria' was defined as the six consecutive months with the highest cumulative proportion of cases. A sensitivity analysis was performed based on a variety of cut-offs. RESULTS: Monthly data for full calendar years on clinical malaria, all hospital admissions with malaria, and entomological inoculation rates were available for 13, 18, and 11 sites respectively. Most sites showed year-round transmission with seasonal peaks for both clinical malaria and hospital admissions with malaria, with a few sites fitting the definition of 'marked seasonality'. For these sites, consistent results were observed when more than one outcome or more than one calendar year was available from the same site. The use of monthly EIR data was found to be of limited value when looking at seasonal variations of malaria transmission, particularly at low and medium intensity levels. CONCLUSION: The proposed definition discriminated well between studies with 'marked seasonality' and those with less seasonality. However, a poor fit was observed in sites with two seasonal peaks. Further work is needed to explore the applicability of this definition on a wide-scale, using routine health information system data where possible, to aid appropriate targeting of interventions

    Malaria Vectors in Lake Victoria and Adjacent Habitats in Western Kenya

    Get PDF
    The prevalence of malaria among the residents of the Lake Victoria basin remains high. The environment associated with the lake may maintain a high number of malaria vectors. Lake habitats including water hyacinths have been suspected to be the source of vectors. This study investigated whether malaria vectors breed in the lake habitats and adjacent backwater pools. Anopheline larvae were collected within the littoral zone of the lake and adjacent pools located along approximately 24.3 km of the lakeshore in western Kenya, and their breeding sites characterized. Three primary vector species, Anopheles arabiensis, Anopheles gambiae s.s. and Anopheles funestus s.s., and three potential vectors, were found in the lake habitats. Unexpectedly, An. arabiensis was the most dominant vector species in the lake sampling sites. Its habitats were uncovered or covered with short grass. A potential secondary malaria vector, Anopheles rivulorum, dominated the water hyacinths in the lake. Most breeding sites in the lake were limited to areas that were surrounded by tall emergent plants, including trees, and those not exposed to waves. Nearly half of adjacent habitats were lagoons that were separated from the lake by sand bars. Lagoons contained a variety of microhabitats. Anopheles arabiensis dominated open habitats, whereas An. funestus s.s. was found mainly in vegetated habitats in lagoons. The current study confirmed that several breeding sites are associated with Lake Victoria. Given that Lake Victoria is the second largest lake in the world, the lake related habitats must be extensive; therefore, making targeted vector control difficult. Further exploration is necessary to estimate the effects of lake associated habitats on malaria transmission so as to inform a rational decision-making process for vector control

    The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa

    Get PDF
    Plasmodium falciparum malaria is a serious tropical disease that causes more than one million deaths each year, most of them in Africa. It is transmitted by a range of Anopheles mosquitoes and the risk of disease varies greatly across the continent. The "entomological inoculation rate" is the commonly-used measure of the intensity of malaria transmission, yet the methods used are currently not standardized, nor do they take the ecological, demographic, and socioeconomic differences across populations into account. To better understand the multiplicity of malaria transmission, this study examines the distribution of transmission intensity across sub-Saharan Africa, reviews the range of methods used, and explores ecological parameters in selected locations. It builds on an extensive geo-referenced database and uses geographical information systems to highlight transmission patterns, knowledge gaps, trends and changes in methodologies over time, and key differences between land use, population density, climate, and the main mosquito species. The aim is to improve the methods of measuring malaria transmission, to help develop the way forward so that we can better assess the impact of the large-scale intervention programmes, and rapid demographic and environmental change taking place across Africa
    corecore