2,694 research outputs found
Market-orientated accounting: Information for product-level decisions
Purpose: The paper's purpose is to explore and describe the interface between the customer component of a market orientation and the accounting information used in making product-level decisions. Design/methodology/approach: Exploratory/descriptive organisational case study of a multi-function product decision-making setting. Development of a model of the customer-accounting information requirements of a market orientation. Findings: Describes how customer-orientated product decisions are guided by managers' shared understanding of product-attributes and conceptions of a 'product' as a 'bundle of attributes, benefits or characteristics'. Describes the limited accounting function involvement in product-decisions and the use of customer-orientated and non-financial decision criteria. Practical implications: A market-orientated approach to business has been associated with increased business performance. The identification and integration of information from the management accounting discipline facilitates the understanding of the resource costs of satisfying individual customer needs and assists in operational level decisions. The authors highlight potential barriers to the integration of customer-orientated accounting information in product decisions. Originality/value: There remains a scarcity of marketing and management accounting interdisciplinary case research at the product-attribute decision-making level. The organisational study provides an insight into the decision-making information and processes at the market orientation and management accounting interface. A framework and suggestions for the further development of interfunctional product-level decision-making are provided
Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re
Chemical engineering and industrial ecology: Remanufacturing and recycling as process systems
Climate change and resource scarcity are just two of the planetary crises that make radical socio-economic change essential if human society is to be sustainable. Chemical engineering is a skill-set that can make a unique contribution to the socio-economic transition, going beyond new technological processes to provide a system-level understanding of economic activities from the perspective of industrial ecology. This paper provides an example by applying process system analysis to the use, re-use, remanufacturing, and recycling of material products. Unlike the ‘circular economy’ approach, the analysis starts from the stock of goods and materials in use in the economy and models the flows required to build up, operate, and maintain the stock. Metrics are developed to account for the effect of stock growth on demand for materials. The significance of the analysis is illustrated for four metals whose industrial ecologies are at different levels of maturity: lead, copper, aluminium, and lithium. Extending product life through re-use and remanufacturing is crucial for resource efficiency, using labour to reduce demand for energy and non-renewable resources. If end-of-life products are processed to recover individual elements, the cost penalties increase rapidly with the decreasing concentration of valuable materials and increasing number of materials in the mixture. Thus, shifting from a linear economy (make−use−dispose) to closed-loop use of materials involves rethinking product design to reduce the number of materials used. Material substitution to reduce demand for scarce materials needs to look beyond equivalence of function to consider changing patterns of use in the regenerative economy
Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties
We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early–Mid Holocene, the period of maximum summer monsoon. Hematite/goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering
Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag
We report experiments on the overall phase diagram of granular flows on an
incline with emphasis on high inclination angles where the mean layer velocity
approaches the terminal velocity of a single particle free falling in air. The
granular flow was characterized by measurements of the surface velocity, the
average layer height, and the mean density of the layer as functions of the
hopper opening, the plane inclination angle and the downstream distance x of
the flow. At high inclination angles the flow does not reach an x-invariant
steady state over the length of the inclined plane. For low volume flow rates,
a transition was detected between dense and very dilute (gas) flow regimes. We
show using a vacuum flow channel that air did not qualitatively change the
phase diagram and did not quantitatively modify mean flow velocities of the
granular layer except for small changes in the very dilute gas-like phase.Comment: 10 pages, 16 figures, accepted to Phys. Rev.
Tawney and the third way
From the 1920s to the 1950s R. H. Tawney was the most influential socialist thinker in Britain. He articulated an ethical socialism at odds with powerful statist and mechanistic traditions in British socialist thinking. Tawney's work is thus an important antecedent to third way thinking. Tawney's religiously-based critique of the morality of capitalism was combined with a concern for detailed institutional reform, challenging simple dichotomies between public and private ownership. He began a debate about democratizing the enterprise and corporate governance though his efforts fell on stony ground. Conversely, Tawney's moralism informed a whole-hearted condemnation of market forces in tension with both his concern with institutional reform and modern third way thought. Unfortunately, he refused to engage seriously with emergent welfare economics which for many social democrats promised a more nuanced understanding of the limits of market forces. Tawney's legacy is a complex one, whose various elements form a vital part of the intellectual background to current third way thinking
Lagrangian filtered density function for LES-based stochastic modelling of turbulent dispersed flows
The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one
of the most promising and viable numerical tools to study turbulent dispersed
flows when the computational cost of Direct Numerical Simulation (DNS) becomes
too expensive. The applicability of this approach is however limited if the
effects of the Sub-Grid Scales (SGS) of the flow on particle dynamics are
neglected. In this paper, we propose to take these effects into account by
means of a Lagrangian stochastic SGS model for the equations of particle
motion. The model extends to particle-laden flows the velocity-filtered density
function method originally developed for reactive flows. The underlying
filtered density function is simulated through a Lagrangian Monte Carlo
procedure that solves for a set of Stochastic Differential Equations (SDEs)
along individual particle trajectories. The resulting model is tested for the
reference case of turbulent channel flow, using a hybrid algorithm in which the
fluid velocity field is provided by LES and then used to advance the SDEs in
time. The model consistency is assessed in the limit of particles with zero
inertia, when "duplicate fields" are available from both the Eulerian LES and
the Lagrangian tracking. Tests with inertial particles were performed to
examine the capability of the model to capture particle preferential
concentration and near-wall segregation. Upon comparison with DNS-based
statistics, our results show improved accuracy and considerably reduced errors
with respect to the case in which no SGS model is used in the equations of
particle motion
- …