248 research outputs found
REGULATORY APPROVAL OF NEW MEDICAL DEVICES: A CROSS SECTIONAL STUDY
Objective To investigate the regulatory approval of new medical devices. Design Cross sectional study of new medical devices reported in the biomedical literature. Data sources PubMed was searched between 1 January 2000 and 31 December 2004 to identify clinical studies of new medical devices. The search was carried out during this period to allow time for regulatory approval. Eligibility criteria for study selection Articles were included if they reported a clinical study of a new medical device and there was no evidence of a previous clinical study in the literature. We defined a medical device according to the US Food and Drug Administration as an âinstrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article.â Main outcome measures Type of device, target specialty, and involvement of academia or of industry for each clinical study. The FDA medical databases were then searched for clearance or approval relevant to the device. Results 5574 titles and abstracts were screened, 493 full text articles assessed for eligibility, and 218 clinical studies of new medical devices included. In all, 99/218 (45%) of the devices described in clinical studies ultimately received regulatory clearance or approval. These included 510(k) clearance for devices determined to be âsubstantially equivalentâ to another legally marketed device (78/99; 79%), premarket approval for high risk devices (17/99; 17%), and others (4/99; 4%). Of these, 43 devices (43/99; 43%) were actually cleared or approved before a clinical study was published. Conclusions We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory clearance or approval. The 510(k) pathway was most commonly used, and clearance often preceded the first published clinical study
Making the leap: the translation of innovative surgical devices from the laboratory to the operating room
MINI-ABSTRACT: A decade from publication, approximately one in ten surgical devices described in the literature made the leap from the laboratory to a first-in-human study. Clinical involvement was a significant predictor of translation; devices developed with clinical collaboration were over six times more likely to be translated than those without. STRUCTURED ABSTRACT: OBJECTIVE: To determine the rate and extent of translation of innovative surgical devices from the laboratory to first-in-human studies, and to evaluate the factors influencing such translation. SUMMARY BACKGROUND DATA: Innovative surgical devices have preceded many of the major advances in surgical practice. However, the process by which devices arising from academia find their way to translation remains poorly understood. METHODS: All biomedical engineering journals, and the five basic science journals with the highest impact factor, were searched between January 1993 and January 2000 using the Boolean search term âsurgery OR surgeon OR surgicalâ. Articles were included if they described the development of a new device and a surgical application was described. A recursive search of all citations to the article was performed using the Web of Science (Thompson-Reuters, New York, USA) to identify any associated first-in-human studies published by January 2015. Kaplan-Meier curves were constructed for the time first-in-human studies. Factors influencing translation were evaluated using Log Rank and Cox proportional hazards models. RESULTS: 8,297 articles were screened, and 205 publications describing unique devices identified. The probability of a first-in-human at 10 years was 9.8%. Clinical involvement was a significant predictor of a first-in-human study (p = 0.02); devices developed with early clinical collaboration were over six times more likely to be translated than those without (RR 6.5 [95% CI 0.9 - 48]). CONCLUSIONS: These findings support initiatives to increase clinical translation through improved interactions between basic, translational, and clinical researchers
Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.
Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity
Regulatory approval of new medical devices: cross sectional study
OBJECTIVE: Â To investigate the regulatory approval of new medical devices. DESIGN: Â Cross sectional study of new medical devices reported in the biomedical literature. DATA SOURCES: Â PubMed was searched between 1 January 2000 and 31 December 2004 to identify clinical studies of new medical devices. The search was carried out during this period to allow time for regulatory approval. ELIGIBILITY CRITERIA FOR STUDY SELECTION: Â Articles were included if they reported a clinical study of a new medical device and there was no evidence of a previous clinical study in the literature. We defined a medical device according to the US Food and Drug Administration as an "instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article." MAIN OUTCOME MEASURES: Â Type of device, target specialty, and involvement of academia or of industry for each clinical study. The FDA medical databases were then searched for clearance or approval relevant to the device. RESULTS: Â 5574 titles and abstracts were screened, 493 full text articles assessed for eligibility, and 218 clinical studies of new medical devices included. In all, 99/218 (45%) of the devices described in clinical studies ultimately received regulatory clearance or approval. These included 510(k) clearance for devices determined to be "substantially equivalent" to another legally marketed device (78/99; 79%), premarket approval for high risk devices (17/99; 17%), and others (4/99; 4%). Of these, 43 devices (43/99; 43%) were actually cleared or approved before a clinical study was published. CONCLUSIONS: Â We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory clearance or approval. The 510(k) pathway was most commonly used, and clearance often preceded the first published clinical study
Making the Leap: the Translation of Innovative Surgical Devices From the Laboratory to the Operating Room
OBJECTIVE: To determine the rate and extent of translation of innovative surgical devices from the laboratory to first-in-human studies, and to evaluate the factors influencing such translation. SUMMARY BACKGROUND DATA: Innovative surgical devices have preceded many of the major advances in surgical practice. However, the process by which devices arising from academia find their way to translation remains poorly understood. METHODS: All biomedical engineering journals, and the 5 basic science journals with the highest impact factor, were searched between January 1993 and January 2000 using the Boolean search term "surgery OR surgeon OR surgical". Articles were included if they described the development of a new device and a surgical application was described. A recursive search of all citations to the article was performed using the Web of Science (Thompson-Reuters, New York, NY) to identify any associated first-in-human studies published by January 2015. Kaplan-Meier curves were constructed for the time to first-in-human studies. Factors influencing translation were evaluated using log-rank and Cox proportional hazards models. RESULTS: A total of 8297 articles were screened, and 205 publications describing unique devices were identified. The probability of a first-in-human at 10 years was 9.8%. Clinical involvement was a significant predictor of a first-in-human study (P = 0.02); devices developed with early clinical collaboration were over 6 times more likely to be translated than those without [RR 6.5 (95% confidence interval 0.9-48)]. CONCLUSIONS: These findings support initiatives to increase clinical translation through improved interactions between basic, translational, and clinical researchers
Reduction of transmission from malaria patients by artemisinin combination therapies: a pooled analysis of six randomized trials
BACKGROUND: Artemisinin combination therapies (ACT), which are increasingly being introduced for treatment of Plasmodium falciparum malaria, are more effective against sexual stage parasites (gametocytes) than previous first-line antimalarials and therefore have the potential to reduce parasite transmission. The size of this effect is estimated in symptomatic P. falciparum infections. METHODS: Data on 3,174 patients were pooled from six antimalarial trials conducted in The Gambia and Kenya. Multivariable regression was used to investigate the role of ACT versus non-artemisinin antimalarial treatment, treatment failure, presence of pre-treatment gametocytes and submicroscopic gametocytaemia on transmission to mosquitoes and the area under the curve (AUC) of gametocyte density during the 28 days of follow up. RESULTS: ACT treatment was associated with a significant reduction in the probability of being gametocytaemic on the day of transmission experiments (OR 0.20 95% CI 0.16-0.26), transmission to mosquitoes by slide-positive gametocyte carriers (OR mosquito infection 0.49 95% CI 0.33-0.73) and AUC of gametocyte density (ratio of means 0.35 95% CI 0.31-0.41). Parasitological treatment failure did not account for the difference between ACT and non-artemisinin impact. The presence of slide-positive gametocytaemia prior to treatment significantly reduced ACT impact on gametocytaemia (p < 0.001). Taking account of submicroscopic gametocytaemia reduced estimates of ACT impact in a high transmission setting in Kenya, but not in a lower transmission setting in the Gambia. CONCLUSION: Treatment with ACT significantly reduces infectiousness of individual patients with uncomplicated falciparum malaria compared to previous first line treatments. Rapid treatment of cases before gametocytaemia is well developed may enhance the impact of ACT on transmission
Cognitive behaviour therapy versus counselling intervention for anxiety in young people with high-functioning autism spectrum disorders: a pilot randomised controlled trial
The use of cognitive-behavioural therapy (CBT) as a treatment for children and adolescents with autism spectrum disorder (ASD) has been explored in a number of trials. Whilst CBT appears superior to no treatment or treatment as usual, few studies have assessed CBT against a control group receiving an alternative therapy.
Our randomised controlled trial compared use of CBT against person-centred counselling for anxiety in 36 young people with ASD, ages 12â18. Outcome measures included parent- teacher- and self-reports of anxiety and social disability.
Whilst each therapy produced improvements inparticipants, neither therapy was superior to the other to a significant degree on any measure. This is consistent with findings for adults
Plasmodium falciparum gametocyte dynamics in areas of different malaria endemicity
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify and compare factors associated with <it>Plasmodium falciparum </it>gametocyte carriage in three regions of differing malaria endemicity.</p> <p>Methods</p> <p>Retrospective data from Thailand, The Gambia and Tanzania were used. The data came from large prospective field-based clinical trials, which investigated gametocyte carriage after different anti-malarial drug treatments.</p> <p>Results</p> <p>Gametocytaemia was detected during the observation period in 12% of patients (931 out of 7548) in Thailand, 34% (683 out of 2020) in The Gambia, and 31% (430 out of 1400) in Tanzania (p < 0.001). Approximately one third (33%, 680/2044) of the patients with gametocytaemia during the observation period, already had patent gametocytaemia at enrolment (day 0 or day 1): 35% (318/931) in Thailand, 37% (250/683) in The Gambia, 26% (112/430) in Tanzania. Maximum gametocytaemia was usually observed on or before the seventh day after starting treatment (93% in Thailand, 70% in Tanzania and 78% in The Gambia). Lowest gametocyte carriage rates were observed following treatment with artemisinin derivatives, while sulphadoxine-pyrimethamine (SP) was associated with significantly greater development of gametocytaemia than other drug treatments (p < 0.001). The duration of gametocyte carriage was shorter in Thailand by 86% and Tanzania by 65% than in The Gambia. Gametocyte carriage was 27% longer among people presenting with anaemia, and was shorter in duration among patients who received artemisinin derivatives, by 27% in Thailand and by 71% in Tanzania and The Gambia.</p> <p>Conclusion</p> <p>This study confirms the independent association of gametocytaemia with anaemia, and the significantly lower prevalence and duration of gametocyte carriage following treatment with an artemisinin derivative. The large differences in gametocyte carriage rates between regions with different levels of malaria transmission suggest that drug interventions to prevent transmission will have different effects in different places.</p
Quantifying the profile and progression of impairments, activity, participation, and quality of life in people with Parkinson disease : protocol for a prospective cohort study
Background Despite the finding that Parkinson disease (PD) occurs in more than one in every 1000 people older than 60 years, there have been few attempts to quantify how deficits in impairments, activity, participation, and quality of life progress in this debilitating condition. It is unclear which tools are most appropriate for measuring change over time in PD. Methods and design This protocol describes a prospective analysis of changes in impairments, activity, participation, and quality of life over a 12 month period together with an economic analysis of costs associated with PD. One-hundred participants will be included, provided they have idiopathic PD rated I-IV on the modified Hoehn & Yahr (1967) scale and fulfil the inclusion criteria. The study aims to determine which clinical and economic measures best quantify the natural history and progression of PD in a sample of people receiving services from the Victorian Comprehensive Parkinson\u27s Program, Australia. When the data become available, the results will be expressed as baseline scores and changes over 3 months and 12 months for impairment, activity, participation, and quality of life together with a cost analysis. Discussion This study has the potential to identify baseline characteristics of PD for different Hoehn & Yahr stages, to determine the influence of disease duration on performance, and to calculate the costs associated with idiopathic PD. Valid clinical and economic measures for quantifying the natural history and progression of PD will also be identified
Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi
<p>Abstract</p> <p>Background</p> <p>The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of <it>Plasmodium falciparum </it>transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on <it>Plasmodium </it>stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (<it>Azadirachta indica</it>, Meliaceae) seeds, is a promising candidate, inhibiting <it>Plasmodium </it>exflagellation <it>in vitro </it>at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal<sup>ÂŽ</sup>, an azadirachtin-enriched extract of neem seeds, using the rodent malaria <it>in vivo </it>model <it>Plasmodium berghei</it>/<it>Anopheles stephensi</it>.</p> <p>Methods</p> <p><it>Anopheles stephensi </it>females were offered a blood-meal on <it>P. berghei </it>infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal<sup>ÂŽ </sup>on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined.</p> <p>Results</p> <p>NeemAzal<sup>ÂŽ </sup>completely blocked <it>P. berghei </it>development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in <it>Plasmodium </it>gametogenesis and ookinete formation.</p> <p>Conclusions</p> <p>This work demonstrated <it>in vivo </it>transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.</p
- âŚ