

REGULATORY APPROVAL OF NEW MEDICAL DEVICES: A CROSS SECTIONAL STUDY

Journal:	вмј
Manuscript ID	BMJ.2015.029502.R2
Article Type:	Research
BMJ Journal:	вмл
Date Submitted by the Author:	12-Apr-2016
Complete List of Authors:	Marcus, Hani; Imperial College London, The Hamlyn Centre Payne, Christopher; Imperial College London, The Hamlyn Centre Hughes-Hallett, Archie; Imperial College London, The Hamlyn Centre Marcus, Adam; Imperial College London, Yang, Guang-Zhong; Imperial College London, The Hamlyn Centre Darzi, Ara; Imperial College London, Nandi, Dipankar; Imperial College Healthcare NHS Trust, Department of Neurosurgery
Keywords:	Translation, Regulation, Regulatory approval, Devices, Implants, Instruments

SCHOLARONE™ Manuscripts

REGULATORY APPROVAL OF NEW MEDICAL DEVICES:

1	REGULATORY APPROVAL OF NEW MEDICAL DEVICES:
2	A CROSS SECTIONAL STUDY
3	Hani J Marcus, MRCS ^{1,2} , Specialty Registrar;
4	Christopher J Payne, PhD ¹ , Postdoctoral Research Fellow;
5	Archie Hughes-Hallett, MRCS ¹ , Specialty Registrar;
6	Adam P Marcus, MBBS ³ , Foundation Year Trainee;
7	Guang-Zhong Yang, FREng ¹ , Professor and co-director of the Hamlyn Centre;
8	Ara Darzi, FRS ¹ , Professor and co-director of the Hamlyn Centre;
9	Dipankar Nandi, D. Phil ² , Consultant Neurosurgeon
10	¹ The Hamlyn Centre, Institute of Global Health Innovation, Imperial College, London, UK;
11	² Department of Neurosurgery, Imperial College Healthcare NHS Trust, London, UK; ³ Faculty of
12	Medicine, Imperial College, London, UK
13	Correspondence:
14	Hani J Marcus, MRCS
15	Clinical Research Fellow and Specialty Registrar in Neurosurgery

- Imperial College London and Imperial College Healthcare NHS Trust
- Hamlyn Centre, Paterson Building (Level 3), Praed Street
- London W2 1NY, UK
- E mail: hani.marcus10@imperial.ac.uk
- Running title:
- Regulatory approval of new medical devices

- 23 Contributors:
- 24 HJM and CJP had equal contribution, and act as guarantors. They were involved in the study
- conception, acquisition of data, analysis of data, and drafting the manuscript. AHH, and APM
- were involved in the study conception, acquisition of data, analysis of data, and critical revision
- of the manuscript. DN, GZY and AD were involved in the study conception and critical revision
- of the manuscript.
- 29 Funding:
- 30 H.J. Marcus was supported by an Imperial College Wellcome Trust Clinical Fellowship, and C.J.
- Payne was supported by a Wates Foundation Fellowship. A Creative Commons Attribution (CC
- 32 BY 4.0) is required.
- 33 Competing interests:
- 34 All authors have completed the ICMJE uniform disclosure form at
- www.icmje.org/coi disclosure.pdf and declare: H.J. Marcus was supported by an Imperial
- 36 College Wellcome Trust Clinical Fellowship, and C.J. Payne was supported by a Wates
- Foundation Fellowship; no financial relationships with any organisations that might have an
- interest in the submitted work in the previous three years; no other relationships or activities that
- 39 could appear to have influenced the submitted work.
- 40 Ethical approval:
- 41 Ethical approval was not required as this study involved information freely available in the
- 42 public domain.
- 43 Data sharing:
- 44 No additional data available.
- 45 Transparency:
- The lead authors (the manuscript's guarantors) affirm that the manuscript is an honest, accurate,
- and transparent account of the study being reported; that no important aspects of the study have
- been omitted; and that any discrepancies from the study as planned have been explained.

Copyright:

> The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, ation,
> within cols,
> eate any other de
> s in the Contribution, v,
> material where-ever it may b.
> 200°C. distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

REGULATORY APPROVAL OF NEW MEDICAL DEVICES:

A CROSS SECTIONAL STUDY

65 ABSTRACT

- Objective: To investigate the regulatory approval of new medical devices.
- 67 Design: Cross sectional study of new medical devices reported in the biomedical literature.
- Data sources: The PubMed database was searched to identify clinical studies of new medical
- devices. We searched between the 1st January 2000 and 31st December 2004 to allow time for
- 70 regulatory approval.
- 71 Eligibility criteria for selecting studies: Articles were included if they reported a clinical study of
- a new medical device and there was no evidence of a previous clinical study in the literature. We
- 73 defined a medical device according to the FDA as an "instrument, apparatus, implement,
- 74 machine, contrivance, implant, in vitro reagent, or other similar or related article..."
- Main outcome measures: For each clinical study we determined the type of device, target
- 76 specialty, involvement of academia, and involvement of industry. The FDA medical databases
- were then searched for clearance or approval relevant to the device.
- Results: 5,574 titles and abstracts were screened, 493 full-text articles assessed for eligibility,
- and 218 clinical studies of new medical devices included. In all, 99/218 (45.4%) of the devices
- 80 described in clinical studies ultimately received regulatory clearance or approval. These included
- 81 510(k) clearance for devices determined to be substantially equivalent to another legally
- marketed device (78/99; 78.8%), premarket approval (PMA) for high-risk devices (17/99;
- 83 17.2%), and others (4/99; 4.0%). Of these, 43 devices (43/99; 43.4%) were actually cleared or
- approved before a clinical study was published.
- 85 Conclusions: We identified a multitude of new medical devices in clinical studies, almost half of
- which received regulatory clearance or approval. The 510(k) pathway was most commonly used,
- and clearance often preceded the first published clinical study.

WHAT THIS PAPER ADDS

- What is already known about the subject:
 - New medical devices have distinct regulatory approval pathways
- What this study adds:
- .cal devices des.

 Joval

 most commonly used, and Almost half of the new medical devices described in the literature ultimately receive regulatory clearance or approval
 - The 510(k) pathway is most commonly used, and clearance often precedes the first published clinical study

REGULATORY APPROVAL OF NEW MEDICAL DEVICES:

A CROSS SECTIONAL STUDY

99 INTRODUCTION

The introduction of new medical devices is fundamental to the advancement of healthcare. Historically, such devices have been adopted with little scientific evidence to support their use. Although many have greatly improved clinical outcomes, not all devices are beneficial and some may be harmful. To this end, most jurisdictions have developed regulatory bodies such as the Food and Drug Administration (FDA) that ensure the safety and effectiveness of new medical devices. These regulatory bodies must also act in an efficient and timely manner such that patients are not deprived from beneficial innovations.

The process by which new high-risk medical devices find their way from bench-to-bedside is well established: (1) the development of the device resulting in a first-in-human study, (2) the evaluation of the device in clinical trials, culminating in a regulatory approval for use, and (3) the adoption of the device.³ While high-risk devices warrant considerable scientific evidence for their safety and effectiveness prior to regulatory approval, the pathway for lower risk devices is less stringent, allowing for their more rapid approval.⁴⁻⁶

The aim of this study was to investigate the use of these distinct regulatory approval pathways for new medical devices.

115 METHODS

We performed a cross sectional study of new medical devices reported in the literature. We determined whether or not these devices received regulatory approval, and the relative contributions of academia and industry in this process. We identified clinical studies of devices before searching for evidence of regulatory approval, allowing us to capture those devices that failed to receive approval.

We defined a medical device according to the US Food and Drug Administration (FDA) as an "instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other

- similar or related article..." We considered a device as new if there was no evidence of a previous
- clinical study in the literature.
- For each article reporting a clinical study of a new medical device, we defined academia and
- industry as involved with the development of the device if a relationship was described in the
- article. We considered a device as having regulatory approval if an entry could be found on the
- FDA medical device databases.
- 129 Patient involvement:
- No patients were involved in setting the research question or the outcome measures, nor were
- they involved in developing plans for design or implementation of the study. No patients were
- asked to advise on interpretation or writing up of results. There are no plans to disseminate the
- results of the research to study participants or the relevant patient community.
- 134 Search strategy:
- The PubMed database (NCBI, Maryland, USA) was searched using the Boolean term: (device
- OR instrument OR apparatus OR implant OR "in vitro reagent" OR system) AND ("first in man"
- OR "first in human" OR "first experience" OR "first clinical" OR "early clinical" OR "early
- experience" OR "early human" OR "initial experience" OR "initial clinical" OR "initial human"
- OR "preliminary clinical" OR "preliminary experience" OR "preliminary human" OR "Phase 1"
- OR "Phase I"). This search term was selected on the basis of efficiency and being able to identify
- the most relevant studies. We searched between the 1st January 2000 and 31st December 2004 to
- allow time for regulatory approval as previous studies have suggested a long lag between device
- development and subsequent regulatory approval. ⁷⁸
- We included articles that reported a clinical study of a new medical device. We excluded articles
- if they only reported a laboratory study of a device because very few such devices ultimately
- result in a clinical study. We also excluded articles if they reported on the novel use of an
- existing device, as we expected that most such devices would already have received regulatory
- 148 approval.
- We estimated based on a pilot study (between 1st January 2000 and 31st July 2000) that this
- search strategy would select sufficient articles to allow for meaningful analysis.

Titles and abstracts were initially screened to identify relevant articles (HJM and CJP, checked by AHH and APM). Articles were excluded if the title or abstract explicitly stated that: the article was not original research, related to drug development, related to an existing medical device, or was a laboratory study. Full articles were subsequently obtained and further assessed for eligibility. In each instance, we reviewed the reference list and searched the PubMed database using the device name to ensure that we did not miss a related previous clinical study (that would result in their exclusion). Discrepancies were resolved by consensus.

158 Medical devices:

For each clinical study of a new medical device we determined the type of device, the target specialty, the involvement of academia, and the involvement of industry (HJM and CJP, checked by AHH and APM). The types of device were based on the FDA definition and the target specialties were drawn from the FDA databases. We considered academia and industry to be involved in the development of a device if relevant author affiliation, financial support, or provision of technology was described in the author affiliations, main text, or acknowledgements of the article. Discrepancies were resolved by consensus.

Regulatory approvals:

For each new medical device we searched the FDA databases for a relevant regulatory clearance or approval. The FDA recognises several types of regulatory pathway depending on the nature of the device. Premarket notification [510(k)] is the regulatory pathway if the device is "substantially equivalent" to a predicate device, and does not necessarily require clinical data. Premarket approval (PMA) is the regulatory pathway if the device is "not substantially equivalent", and requires reasonable evidence of safety and effectiveness. Other regulatory pathways include humanitarian device exemption (HDE) if the device is for use in patients with rare diseases or conditions. We searched the FDA 510(k), PMA, and HDE databases using the device name, applicant name, and relevant keywords (HJM and CJP, checked by AHH and APM). We also searched GoogleTM (Google Inc., California, USA) for devices that may have been discontinued, withdrawn, or recalled. Search results were not limited to a date range, allowing for the identification of regulatory clearance or approval before the first published

clinical study. All the searches were performed in August 2015, allowing a minimum of 10 years

from publication to regulatory clearance or approval. Discrepancies were resolved by consensus.

181 Statistical analysis:

We used the Chi-square test to compare differences in regulatory clearance or approval between the following groups: devices developed by industry alone versus academia alone; devices developed by both industry and academia versus academia alone; and devices developed by both industry and academia versus industry alone. First, we compared the proportion of devices receiving any regulatory clearance or approval (versus no clearance or approval). Second, we compared the proportion of devices receiving 510(k) clearance (versus any other approval). We considered differences to be statistically significant if P was less than 0.05. All statistical analyses were performed using SPSS 22.0 (IBM, New York, USA).

190 RESULTS

- Search strategy:
- In all, 5,574 titles and abstracts were screened, 493 full-text articles assessed for eligibility, and
- 193 218 clinical studies of new medical devices included (Figure 1). The corresponding authors
- originated from 28 countries, but the majority were located in the USA (70/218; 32.1%) and
- 195 Germany (43/218; 19.7%).
- 196 Medical devices:
- Most of the medical devices reported were instruments (86/218; 39.4%) or implants (79/218;
- 198 36.2%) (Table 1). Devices were developed by industry alone (140/218; 64.2%), academia alone
- 199 (46/218; 21.1%), or both (32/218; 14.7%).
- 200 Regulatory approvals:
- 201 Of the 218 devices described in clinical studies, 99 (45.4%) ultimately received regulatory
- clearance or approval (Table 2). These included 510(k) clearance (78/99; 78.8%), PMA, (17/99;
- 203 17.2%), and HDA (4/99; 4.0%).

Regulatory clearance or approval was granted between April 1997 and September 2014. The median lag between publication of the clinical study and regulatory clearance or approval was 2 months (interquartile range -10.8 months to 26.3 months). Of these, 43 devices (43/99; 43.4%) were actually cleared or approved before a clinical study was published; the median lag in these devices was -12.5 months (interquartile range -23.3 months to -6.3 months).

- Published clinical studies of devices that received regulatory clearance or approval were mostly case series' comprising Level 4 evidence (89/99; 89.9%).
- Statistical analysis:

- Devices were more likely to receive regulatory clearance or approval if developed by industry alone compared to academia alone (57.9% vs. 10.9%; p <0.001), or by both industry and academia compared to academia alone (40.6% vs. 10.9%; p = 0.003). There was no significant difference in clearance or approval between devices developed by industry alone compared to both industry and academia (57.9% vs. 40.6%; p = 0.114).
- There was no significant difference in the proportion of 510(k) clearance and other approvals that were awarded to industry alone, industry and academia, or academia alone (p >0.1 in all cases).

DISCUSSION

- Principal findings:
 - We identified a multitude of new medical devices in clinical studies, almost half of which received regulatory approval. The 510(k) pathway was most commonly used, and devices often received regulatory clearance before the first published clinical study. The corollary is that many devices cleared for use in patients had no clinical data accessible in the literature to support their use. Published clinical studies were mostly case series' comprising Level 4 evidence. Without high quality clinical data available, informed shared decision-making on the use of new medical devices is difficult if not impossible.
- The 510(k) pathway is a fast-track system that allows the regulatory approval of a device that is "substantially equivalent" to a predicate device. A device is considered substantially equivalent

if: (1) it has the same intended use as the predicate device and (2) it has the same technological characteristics or, if it has different technological characteristics, information is provided that demonstrates that it is at least as safe and effective as the predicate device. Clinical studies are therefore not usually required.

The introduction of a device after it has been cleared through the 510(k) pathway is usually unstructured and variable.² A device may be introduced in the form of a research study but, more frequently, may be published as a non-comparative trial without special institutional board review. Although many such devices are safe and effective, the dangers of this process are obvious and have been reported.¹⁰⁻¹³ The Balliol Collaboration has proposed the IDEAL model for safe innovation to address this shortfall, the central tenet being that innovation and evaluation can and should proceed together in an ordered and logical manner. ^{2 14-18} Moreover, the FDA has recognised the need for reform and has announced a new vision for post market surveillance of new devices.¹⁹

Industry was found to have a role in the development and regulatory approval of the majority of devices identified. For devices developed in academia collaboration with industry was associated with greater regulatory approval. Interestingly, the proportion of 510(k), PMA and other approvals that were awarded to industry and academia were comparable, suggesting that the greater regulatory approvals of devices developed by industry did not simply reflect a propensity for less disruptive and lower risk innovations. This finding supports efforts such as the Medical Device Innovation Consortium (MDIC) that facilitate collaboration among academia and industry in order to foster technology transfer.²⁰ Collaboration between academia and industry may also contribute to improved surveillance of devices after they receive regulatory approval.

Comparison with other studies:

In keeping with the present study, several other groups have also found limited publically available evidence to support the regulatory clearance and approval of new devices. Zuckerman et al evaluated the types of scientific evidence used to support devices cleared using the 510(k) pathway.⁵ Of the 50 devices included, 8 had data to support the claim they were substantially equivalent to a predicate device, and only 3 had data on safety or effectiveness. Chang et al found that even devices approved using the PMA pathway, which require considerably more

scientific evidence, often had no published clinical trials.²¹ When trials are published, comparators are often absent, and details may differ substantially from the data submitted to the FDA.^{21 22}

In a previous study we investigated the translation of new devices from the laboratory to first-in-human studies⁹. In contrast to the present study we found that clinical rather than industry collaboration was the most important predictor of success; devices developed with clinical collaboration were over six times more likely to lead to a first-in-human study than those without. It is likely that this incongruity is the result of the varying role of clinical and industry collaboration through the device development pathway; early clinical studies may be more reliant on clinicians, and later regulatory approval more reliant on industry.

270 Limitations:

- We recognise several limitations to this study. We restricted our analysis to clinical studies of new medical devices reported in the biomedical literature. It is likely that the publication practices of academia and industry vary. We speculate that academia may be more motivated to publish early clinical studies.
- Our analysis may also have favoured more novel devices, which clinicians might have thought warranted publication in the biomedical literature. The proportion of devices cleared through the 510(k) pathway was therefore likely to be an underestimate.

We determined whether a device had regulatory approval using only the FDA medical device databases. The proportion of medical devices receiving regulatory approval was therefore also undoubtedly an underestimate, in particular it is likely that licenses were granted from the European Union which does not require any evidence of clinical value. The reason for selecting the FDA, rather than other licensing authorities, was because the FDA provides public databases and search engines that allowed for a systematic search strategy, the FDA acts as the central body for all medical devices receiving regulatory approval in the USA, and the USA represents the largest medical device market in the world. We hypothesise that most of the manufacturers of devices that received regulatory approval from another jurisdiction would have ultimately sought and obtained FDA approval within the timeframe of this study if they were successful.

We evaluated the contributions of academia and industry in the development of a device if a relationship was described in the author affiliations, main text, or acknowledgements of the first published clinical study. We acknowledge that our cross-sectional study design does not capture potential interactions between academia and industry during the early device development phase, such as the creation of spinout companies, or the licensing of intellectual property to industry. This study does not identify why industry was superior in obtaining regulatory approval compared to academia alone. One possible explanation is that the profit-seeking motive of industry hones their choice as to which devices are pursued.

Conclusions:

The optimal framework for the regulatory approval of medical innovations remains unclear. This study suggests that many new devices do receive regulatory approval, but often lack clinical trial data supporting their safety and effectiveness.

The IDEAL model makes several proposals for the staged introduction of innovations in surgery (and other disciplines that offer complex interventions), including randomised controlled trials to assess safety and effectiveness. At present, few relevant randomised controlled trials are published, and fewer still meet current quality standards for optimal reporting. Changes in the regulatory approval of devices that would require trials for proof of safety and effectiveness might promote adherence to the IDEAL model.

REFERENCES

- 1. Steiner CA, Bass EB, Talamini MA, et al. Surgical Rates and Operative Mortality for Open and Laparoscopic Cholecystectomy in Maryland. New Engl J Med 1994;**330**(6):403-08.
- 2. Barkun JS, Aronson JK, Feldman LS, et al. Evaluation and stages of surgical innovations.

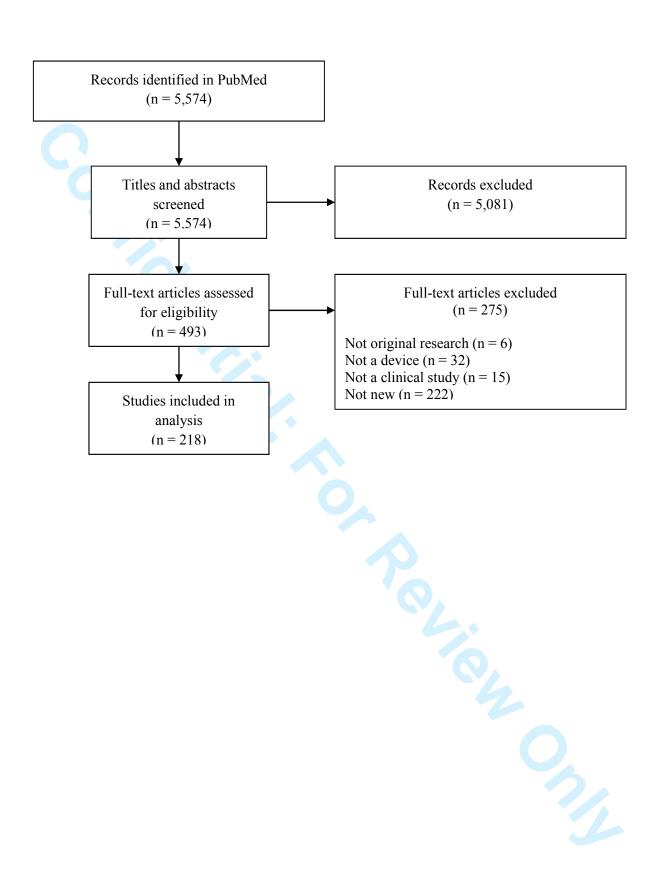
 Lancet 2009;**374**(9695):1089-96.
- 3. Drolet BC, Lorenzi NM. Translational research: understanding the continuum from bench to bedside. Translational research: the journal of laboratory and clinical medicine 2011;157(1):1-5.
- 4. Thompson M, Heneghan C, Billingsley M, et al. Medical device recalls and transparency in the UK. Bmj 2011;**342**:d2973.
- 5. Zuckerman D, Brown P, Das A. Lack of publicly available scientific evidence on the safety and effectiveness of implanted medical devices. JAMA Intern Med 2014;**174**(11):1781-7.
- 6. Zuckerman DM, Brown P, Nissen SE. Medical device recalls and the FDA approval process.

 Arch Intern Med 2011;**171**(11):1006-11.
- 7. Contopoulos-Ioannidis DG, Alexiou GA, Gouvias TC, et al. Medicine. Life cycle of translational research for medical interventions. Science 2008;**321**(5894):1298-9.
- 8. Contopoulos-Ioannidis DG, Ntzani E, Ioannidis JP. Translation of highly promising basic science research into clinical applications. Am J Med 2003;**114**(6):477-84.
- 9. Marcus HJ, Payne C, Hughes-Hallett A, et al. Making the leap: The translation of innovative surgical devices from the laboratory to the operating room. Ann Surg 2015.
- 10. Paul S, McCulloch P, Sedrakyan A. Robotic surgery: revisiting "no innovation without evaluation". Bmj 2013;**346**:f1573.
- 11. Wilmshurst P. The regulation of medical devices. Bmj 2011;**342**:d2822.
- 12. Nieuwenhuijse MJ, Nelissen RG, Schoones JW, et al. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies. Bmj 2014;**349**:g5133.
- 13. Kesselheim AS, Rajan PV. Regulating incremental innovation in medical devices. Bmj 2014;**349**:g5303.

- 14. Cook JA, McCulloch P, Blazeby JM, et al. IDEAL framework for surgical innovation 3:
- randomised controlled trials in the assessment stage and evaluations in the long term
- study stage. Bmj-Brit Med J 2013;**346**.
- 15. Ergina PL, Barkun JS, McCulloch P, et al. IDEAL framework for surgical innovation 2: observational studies in the exploration and assessment stages. Bmj-Brit Med J 2013;**346**.
- 16. McCulloch P, Cook JA, Altman DG, et al. IDEAL framework for surgical innovation 1: the idea and development stages. Bmj-Brit Med J 2013;**346**.
- 17. McCulloch P, Altman DG, Campbell WB, et al. No surgical innovation without evaluation: the IDEAL recommendations. Lancet 2009;**374**(9695):1105-12.
- 18. Ergina PL, Cook JA, Blazeby JM, et al. Surgical Innovation and Evaluation 2 Challenges in evaluating surgical innovation. Lancet 2009;**374**(9695):1097-104.
- 19. Normand SLT, Hatfield L, Drozda J, et al. Postmarket surveillance for medical devices:
 America's new strategy. Br Med J (Clin Res Ed) 2012;345.
- 20. McMurry-Heath M, Hamburg MA. Creating a space for innovative device development. Sci Transl Med 2012;**4**(163):163fs43.
- 21. Chang L, Dhruva SS, Chu J, et al. Selective reporting in trials of high risk cardiovascular devices: cross sectional comparison between premarket approval summaries and published reports. Bmj 2015;**350**:h2613.
- 22. Rathi VK, Krumholz HM, Masoudi FA, et al. Characteristics of Clinical Studies Conducted
 Over the Total Product Life Cycle of High-Risk Therapeutic Medical Devices Receiving
 FDA Premarket Approval in 2010 and 2011. Jama 2015;314(6):604-12.

TABLES

Table 1. Characteristics of new medical devices, and whether they ultimately received regulatory clearance or approval, or not.


	Total (n = 218)	Clearance or approval (n = 99)	No clearance or approval (n = 119)
Type of device			
Imaging	31	11	20
Implant	79	37	42
Instrument	86	47	39
Laboratory analysis	3	1	2
Monitor	10	3	7
Physical therapy	7	0	7
Other	2	0	2
	C	4	
Target specialty			
Anesthesiology	5	2	3
Cardiovascular	67	40	27
Clinical Chemistry	2	0	2
Clinical Toxicology	1	0	1
Dental	2	0	2
Ear, Nose and Throat	12	3	9

Gastroenterology and Urology	19	7	12
General and Plastic Surgery	22	11	11
General Hospital	8	2	6
Hematology	2	1	1
Neurology	15	6	9
Obstetrics and Gynaecology	11	6	5
Ophthalmic	11	5	6
Orthopaedic	22	10	12
Physical Medicine	6	0	6
Radiology	13	6	7

Table 2. Development of new medical devices, whether they ultimately received regulatory clearance or approval, and the regulatory pathway used.

	Total (n = 218)	Clearance or approval (n = 99)	510k (n = 78)	PMA (n = 17)	HDA (n = 4)
Academia alone	46	5	5	0	0
Academia and Industry	32	13	10	1	2
Industry alone	140	81	63	16	2

tow chart demonstrating the selects.

SUPPLEMENT

Table 1. Devices identified that received regulatory approval. * The Oxford 2011 Levels of Evidence

Device	Article title	Journal	Year	Evidence	Level of evidence*
Talent abdominal	Early experience with	Tex Heart Inst J	2000	Case series (n > 120)	Level 4
stent graft system	the Talent stent-graft				
	system for	47 A			
	endoluminal repair of				
	abdominal aortic	6/			
	aneurysms.	14.			
Cryogen cryosurgical	Endometrial	J Am Assoc Gynecol	2000	Case series (n = 10)	Level 4
system	cryoablation with	Laparosc			
	ultrasound				
	visualization in				
	women undergoing		101		
	hysterectomy.				
Debakey VAD	First clinical	Circulation	2000	Case series $(n = 2)$	Level 4
	experience with the				
	DeBakey VAD				
	continuous-axial-flow				6
	pump for bridge to				
	transplantation.				

Siemens magnetom	Interventional MRI-	Magn Reson Med	2000	Case series (n = 26)	Level 4
0.2T concerto	guided brain biopsies				
	using inductively				
	coupled surface coils.				
Plateletworks	Clinical evaluation of	Crit Care Med	2000	Cross sectional study	Level 2
	a new, point-of-care			(n = 345)	
	hemocytometer.				
SMART nitinol stent	Endovascular stenting	AJNR Am J	2000	Case series (n = 4)	Level 4
system	for carotid artery	Neuroradiol			
	stenosis: preliminary	9/4			
	experience using the	* ^			
	shape-memory- alloy-				
	recoverable-				
	technology (SMART)				
	stent.				
HomMed sentry,	Emergence of	Congest Heart Fail	2000	Non-randomised	Level 3
Model 1 sentry	electronic home			controlled cohort	
	monitoring in chronic			study $(n = 53)$	
	heart failure:				
	rationale, feasibility,				
	and early results with				5/
	the HomMed Sentry-				1/12
	Observer system.				

Smith & Nephew	Hand-assisted	Ann Surg	2000	Case series (n = 68)	Level 4
HandPort system	laparoscopic surgery				
	(HALS) with the				
	HandPort system:				
	initial experience with				
	68 patients.				
EBI Omega 21	Biomechanical	J Spinal Disord	2000	Case series (n = 14)	Level 4
system	evaluation and	K .>			
	preliminary clinical				
	experience with an	9/.			
	expansive pedicle				
	screw design.				
MR elastography	High-resolution	Phys Med Biol	2000	Case series	Level 4
	tensor MR				
	elastography for				
	breast tumour		101	▶ .♦	
	detection.				

ATTAIN access 6218	Initial results with left	Pacing Clin	2000	Case series (n = 13)	Level 4
left-heart delivery	ventricular pacemaker	Electrophysiol			
system, model 6218	lead implantation				
	using a preformed				
	"peel-away" guiding				
	sheath and "side-				
	wire" left ventricular				
	pacing lead.	K >			
Biologic-DT system	Push-pull sorbent-	Ther Apher	2000	Case series (n = 4)	Level 4
(biologic-DT-1000	based pheresis and	9/.			
with DT-1000-TK)	hemodiabsorption in				
	the treatment of				
	hepatic failure:				
	preliminary results of				
	a clinical trial with the				
	BioLogic-DTPF		161	>	
	System.				
Lap discs	Hand assisted	J Urol	2000	Non randomised	Level 3
	laparoscopic radical			controlled cohort (n =	
	nephrectomy for renal			6)	
	carcinoma using a				5/
	new abdominal wall				1/1.
	sealing device.				

Gore helex TM septal	Helex Septal	Curr Interv Cardiol	2000	Case series (n = 28)	Level 4
occluder	Occluder for Closure	Rep			
	of Atrial Septal				
	Defects.				
Atlantis anterior	The management of	J Spinal Disord	2000	Case series (n = 8)	Level 4
cervical plate system	one-level anterior				
	cervical corpectomy				
	with fusion using	K .>			
	Atlantis hybrid plates:				
	preliminary	'9/.			
	experience.				
P.D. access	Gaining vascular	Catheter Cardiovasc	2000	Case series (n = 39)	Level 4
(percutaneous	access in pediatric	Interv			
doppler) vascular	patients: use of the				
access device	P.D. access Doppler				
	needle.		101	▶.♦	
Photon DR	Initial clinical	Pacing Clin	2000	Case series (n = 57)	Level 4
implantable	experience with a	Electrophysiol		(4)	
cardioverter	dual chamber rate				
defibreillator (ICD)	responsive				
	implantable				5,
	cardioverter				
	defibrillator.				

Aescula LV model	Initial clinical	Pacing Clin	2000	Case series (n = 13)	Level 4
1055K	experience with a new	Electrophysiol			
	self-retaining left				
	ventricular lead for				
	permanent left				
	ventricular pacing.				
Vasca LifeSite	Initial clinical results	Kidney Int	2000	Case series (n = 23)	Level 4
Hemodialysis Access	with the LifeSite	5 .			
System	Hemodialysis Access				
	System.	9/.			
Omniport	Laparoscopic hand-	Surg Endosc	2000	Case series (n = 14)	Level 4
	assisted surgery for				
	hepatic and pancreatic				
	disease.				
Ophthalmic medical	Laser	Ophthalmic Surg	2000	Case series (n = 8)	Level 4
laser system	trabeculodissection	Lasers	, (21)	▶ .♦	
	with a photopolishing				
	scanning excimer			(6/)	
	laser.				
SimpliCT	Potential of a new	Neuroradiology	2000	Case series (n = 8)	Level 4
	laser target system for				5,
	percutaneous CT-				
	guided nerve blocks:				
	technical note.				

Easytrak coronary	Transvenous left	Am J Cardiol	2000	Case series (n = 186)	Level 4
venous steroid-	ventricular lead				
eluding single-	implantation with the				
electrode	EASYTRAK lead				
	system: the European				
	experience.				
Medtronic AVE	Balloon-assisted coil	Neurol Med Chir	2000	Case series $(n = 7)$	Level 4
solstice temporary	placement in wide-	(Tokyo)			
occlusion balloon	necked cerebral				
system	aneurysms:	9/.			
	preliminary clinical				
	experience.				
Leksell gamma knife	First clinical	J Neurosurg	2000	Case series (n = 50)	Level 4
target system, model	experience with the				
24001	automatic positioning				
	system and Leksell		. 64	▶ .♦	
	gamma knife Model				
	C. Technical note.			C/2	
				0	7/

Cordis Palmaz	Initial experience	Catheter Cardiovasc	2000	Case series (n = 4)	Level 4
Corinthian	using the Palmaz	Interv			
Transhepatic Biliary	Corinthian stent for				
Stent and Delivery	right ventricular				
System	outflow obstruction in				
	infants and small				
	children.				
Dysis	A novel optical	IEEE Trans Biomed	2001	Case series (n = 16)	Level 4
	imaging method for	Eng			
	the early detection,	9/.			
	quantitative grading,				
	and mapping of				
	cancerous and				
	precancerous lesions				
	of cervix.				
Sculptor robotic	The first clinical	Comput Aided Surg	2001	Case series	Level 4
guidance arm (RGA)	application of a				
	"hands-on" robotic			C//_	
	knee surgery system.				

Cooltouch "v"	Facial rejuvenation	Dermatol Surg	2001	Case series (n = 10)	Level 4
Nd:YAG surgical	with a nonablative				
laser	1320 nm Nd:YAG				
	laser: a preliminary				
	clinical and histologic				
	evaluation.				
Excluder bifurcated	Update on the	J Vasc Surg	2001	Case series (n = 29)	Level 4
endoprosthesis	bifurcated	K .			
	EXCLUDER				
	endoprosthesis: phase	'9/.			
	I results.				
Contak TR pacemaker	[Experiences with a	Herz	2001	Case series (n = 16)	Level 4
	new transvenous				
	new transvenous electrode for left		7 A		
			7		
	electrode for left		Pel	> . *	
Symmetry	electrode for left ventricular	Lancet	2001	Case study (n = 1)	Level 4
Symmetry	electrode for left ventricular stimulation].	Lancet	2001	Case study (n = 1)	Level 4
Symmetry	electrode for left ventricular stimulation]. Sutureless mechanical	Lancet	2001	Case study (n = 1)	Level 4
Symmetry	electrode for left ventricular stimulation]. Sutureless mechanical anastomosis of a	Lancet	2001	Case study (n = 1)	Level 4
Symmetry	electrode for left ventricular stimulation]. Sutureless mechanical anastomosis of a saphenous vein graft	Lancet	2001	Case study (n = 1)	Level 4
Symmetry	electrode for left ventricular stimulation]. Sutureless mechanical anastomosis of a saphenous vein graft to a coronary artery	Lancet	2001	Case study (n = 1)	Level 4

Gyrus plasmakinetic	Electrovaporization of	J Endourol	2001	Case series $(n = 42)$	Level 4
Superpulse System	the prostate with the			,	
	Gyrus device.				
Voice master	First results of the	Clin Otolaryngol	2001	Case series (n = 85)	Level 4
prosthesis	VoiceMaster	Allied Sci		, , ,	
•	prosthesis in three				
	centres in the				
	Netherlands.	5 .5			
Parietex composite	Laparoscopic repair	Surg Laparosc Endosc	2001	Case series (n = 20)	Level 4
(PCO) mesh	of ventral and	Percutan Tech			
	incisional hernias				
	using a new				
	composite mesh				
	(Parietex): initial				
	experience.				
Polestar N-10	Novel, compact,	Neurosurgery	2001	Case series (n = 20)	Level 4
	intraoperative				
	magnetic resonance			C//_	
	imaging-guided				
	system for				
	conventional				5,
	neurosurgical				
	operating rooms.				

Soundtec® direct	Semi-implantable	Otolaryngol Clin	2001	Case series (n = 5)	Level 4
system	electromagnetic	North Am		` ,	
	middle ear hearing				
	device for moderate				
	to severe				
	sensorineural hearing				
	loss.				
Nit-occlud PDA	The duct-occlud	J Interv Cardiol	2001	Case series (n = 821)	Level 4
	device: design,				
	clinical results, and	9/.			
	future directions.				
Ems swiss orthoclast	Cement removal with	Arch Orthop Trauma	2001	Case series (n = 28)	Level 4
	an endoscopically	Surg			
	controlled ballistically				
	driven chiselling				
	system. A new device		, 61	▶ .♦	
	for cement removal				
	and preliminary			CI	
	clinical results.				

Corlink Automated	Early clinical	J Thorac Cardiovasc	2001	Case series (n = 17)	Level 4
Anastomotic Device	experience with a new	Surg			
(AAD)	sutureless				
	anastomotic device				
	for proximal				
	anastomosis of the				
	saphenous vein to the				
	aorta.	K .			
Visian ICL	Collamer intraocular	J Cataract Refract	2001	Case series (n = 686)	Level 4
(implantable collamer	lens: clinical results	Surg			
lens)	from the US FDA				
	core study.				
Ligasure Vessel	Initial results with an	Surg Endosc	2001	Case series (n = 98)	Level 4
Sealing System	electrothermal bipolar				
	vessel sealer.				
	1				

Siremobil ISO-C 3D	[3-D imaging with a	Unfallchirurg	2001	Cross sectional study	Level 2
	mobile surgical image				
	enhancement				
	equipment (ISO-C-				
	3D). Initial examples				
	of fracture diagnosis				
	of peripheral joints in				
	comparison with	5 .			
	spiral CT and				
	conventional	9/.			
	radiography].				
Safe-steer guide wire	Initial experience and	Catheter Cardiovasc	2001	Case series (n = 6)	Level 4
system	safety in the treatment	Interv			
	of chronic total				
	occlusions with				
	fiberoptic guidance		(6)	>	
	technology: optical				
	coherent			(6/2	
	reflectometry.				
Extracorporeal shock	The first clinical	Ultrasound Med Biol	2002	Case series (n = 297)	Level 4
wave lithotripter	results of "wide-focus				5,
	and low-pressure"				
	ESWL.				

GE discovery LS	Initial clinical	Br J Radiol	2002	Case series	Level 4
system	experience using a				
	new integrated in-line				
	PET/CT system.				
Shelhigh no-react	The YAMA UroPatch	J Laparoendosc Adv	2002	Case series (n = 22)	Level 4
tissue repair	sling for treatment of	Surg Tech A			
patch/uropatch.	female stress urinary				
	incontinence: a pilot	K .			
	study.	/ 3.			
Medtronic model	Initial experience with	J Am Coll Cardiol	2002	Case series (n = 84)	Level 4
7272 InSync ICD	an implantable	* ^			
	cardioverter-				
	defibrillator				
	incorporating cardiac				
	resynchronization				
	therapy.		(0)	>. >	
Mammosite radiation	Dosimetric	Int J Radiat Oncol	2002	Case control study (n	Level 4
therapy system (RTS)	characteristics of the	Biol Phys		= 12)	
tray, mammosite	MammoSite RTS, a				
HDR afterloader	new breast				
accessories tray	brachytherapy				5.4
	applicator.				

Nomos corvus 5.0m	Clinical	Int J Radiat Oncol	2002	Case series (n = 50)	Level 4
	implementation of	Biol Phys			
	intensity-modulated				
	arc therapy.				
Boston	Seoul-type	Arch Ophthalmol	2002	Case series (n = 7)	Level 4
keratoprosthesis or	keratoprosthesis:				
Boston KPRO	preliminary results of				
	the first 7 human	5 .			
	cases.	/3.			
Valleylab ligasure	Use of a bipolar	J Gastrointest Surg	2002	Case series (n = 27)	Level 4
precise instrument	vessel-sealing device				
vessel sealing system-	for parenchymal				
model # ls1200 &	transection during				
sligaure generator	liver surgery.				
Intrastent doublestrut	Initial experience with	Catheter Cardiovasc	2002	Case series (n = 22)	Level 4
stent	intratherapeutics	Interv	, (4)	▶.♦	
	Intrastent Doublestrut				
	LD stents in patients			C1/2	
	with congenital heart				
	defects.				

Niti-s stent &	Polyurethane-covered	Cardiovasc Intervent	2002	Case series (n = 10)	Level 4
introducer, model	self-expandable	Radiol			
eoxxxx	nitinol stent for				
	malignant biliary				
	obstruction:				
	preliminary results.				
Artifical cervical disc	Preliminary clinical	Neurosurgery	2002	Case series (n = 60)	Level 4
	experience with the	K .>			
	Bryan Cervical Disc				
	Prosthesis.	9/.			
The auto suture	Stereotactic breast	Eur Radiol	2002	Case series (n = 138)	Level 4
MIBB system	biopsy with an 8-				
	gauge, directional,				
	vacuum-assisted				
	probe: initial				
	experience.		, 61	>_ \	
Biorigid nail femur	["Biorigid"	Unfallchirurg	2002	Case series (n = 76)	Level 4
(BNF)	interlocking after			C//_	
	unreamed				
	intramedullary nailing				
	of tibial shaft				5,
	fractures].				1/12

Eg-3630ur, ultrasund	Initial experience with	Gastrointest Endosc	2002	Cross sectional study	Level 2
video gastroscope	an electronic radial			(n=14)	
	array echoendoscope:				
	randomized				
	comparison with a				
	mechanical sector				
	scanning				
	echoendoscope in	K .>			
	humans.				
Bodyfix	A novel vacuum	Eur Radiol	2002	Non randomised	Level 3
	device for extremity			controlled cohort (n =	
	immobilisation during			100)	
	digital angiography:				
	preliminary clinical				
	experiences.				
Setpoint endovascular	Initial experience with	Anesth Analg	2002	Case series (n = 8)	Level 4
temperature	a novel heat-				
management system	exchanging catheter			(C)/2	
	in neurosurgical				
	patients.				
HTS coil	Superconducting RF	Acad Radiol	2003	Cross sectional study	Level 2
	coils for clinical MR				1/12
	imaging at low field.				

Surgical sealant	Feasibility study of	AJR Am J	2003	Case series (n = 26)	Level 4
	NeoMend, a	Roentgenol			
	percutaneous arterial				
	closure device that				
	uses a				
	nonthrombogenic				
	bioadhesive.				
Daum-lectric MRI	Magnetic resonance-	Invest Radiol	2003	Case series (n = 17)	Level 4
drilling machine	guided transcortical				
	biopsy of bone	'9/.			
	marrow lesions using				
	a magnetic resonance				
	imaging-compatible				
	piezoelectric power				
	drill: preliminary				
	experience.		, 61	▶ .♦	
Spy intra-operative	Preliminary	Ann Thorac Surg	2003	Case series (n = 84)	Level 4
imaging system:	experience with a			C/2	
sp2000	novel intraoperative				
	fluorescence imaging				
	technique to evaluate				5,
	the patency of bypass			_	1/12
	grafts in total arterial				
	revascularization.				

CV232 sre pre-rolled	Deep sclerectomy	Can J Ophthalmol	2003	Case control study (n	Level 4
acrylic intraocular	with a nonabsorbable			= 25)	
lens	implant (T-Flux):				
	preliminary results.				
Reform peripheral	Initial experience with	Catheter Cardiovasc	2003	Case series (n = 77)	Level 4
catheter system,	a new 8 French-	Interv			
model 02200; reform	compatible directional				
peripheral	atherectomy catheter:	5 .			
cathetercatheter,	immediate and mid-				
model 02406	term results.	9/.			
Surgifrost 10 cm	Intraoperative left	Ann Thorac Surg	2003	Case series (n = 28)	Level 4
cryosurgical device	atrial ablation (for				
plus frostbyte clamp	atrial fibrillation)				
and cryosurgical	using a new argon				
console	cryocatheter: early				
	clinical experience.		, 61	▶.♦	
Attain 6218a-am	New catheter design	Catheter Cardiovasc	2003	Case series (n = 5)	Level 4
amplatz guide	for cannulation of the	Interv		C//	
catheter for left-heart	anomalous right				
delivery	coronary artery				
	arising from the left				5,
	sinus of valsalva.				

Rossmax automatic	Validation of the	Blood Press Monit	2003	Cross sectional study	Level 2
blood pressure	ROSSMAX blood			(n = 33)	
monitor, model	pressure measuring				
cardiocare 1000i	monitor according to				
	the European Society				
	of Hypertension				
	International Protocol				
	for Validation of	K •			
	Blood Pressure				
	Measuring Devices in	'9/,			
	Adults.				
Tonoport V	Validation of the	Blood Press Monit	2003	Cross sectional study	Level 2
	TONOPORT V			(n = 33)	
	ambulatory blood				
	pressure monitor				
	according to the		161	>	
	European Society of				
	Hypertension			(6/2	
	International Protocol				
	for Validation of				
	Blood Pressure				5,
	Measuring Devices in				
	Adults.				

Neuroform TM	Preliminary	Neurosurgery	2004	Case series (n = 18)	Level 4
microdelivery stent	experience using the				
system	Neuroform stent for				
	the treatment of				
	cerebral aneurysms.				
Trellis infusion	Clinical and economic	J Vasc Surg	2004	Case series (n = 26)	Level 4
system (10cm	evaluation of the				
infusion length);	trellis thrombectomy	K .			
trellis infusion system	device for arterial				
(20cm infusion	occlusions:	'9/.			
length)	preliminary analysis.				
ATS 3f aortic	Early clinical	Heart Surg Forum	2004	Case series (n = 24)	Level 4
bioprosthesis	experience with a new				
	tubular equine				
	pericardial stentless				
	aortic valve.		, 61	▶.♦	
Portaclamp	Early experience with	Heart Surg Forum	2004	Case series (n = 20)	Level 4
	a new aortic clamping			C //	
	system designed for				
	port access cardiac				
	surgery: the				5,
	PortaClamp.				

Silverhawk peripheral	Early experience with	Catheter Cardiovasc	2004	Case series (n = 10)	Level 4
plaque excision	a novel plaque	Interv			
system, models	excision system for				
02550,04800, 05200,	the treatment of				
02406, 04706, 04300	complex coronary				
	lesions.				
Corlink AAD (3.5 to	Initial experience of	Heart Surg Forum	2004	Case series (n = 14)	Level 4
6.0 m m outer	an automated	5 .			
diameter	anastomotic distal				
vessels),model 200-	device in off-pump	9/.			
064, corlink aad (2.0	CABG.				
to 4.0 mm outer					
diameter vessels), m					
Abiocor®	Initial experience with	J Thorac Cardiovasc	2004	Case series (n = 7)	Level 4
Implantable	the AbioCor	Surg			
Replacement Heart	implantable		(6)	▶ .♦	
	replacement heart				
	system.			(6/)	
Medamicus	Preliminary	Semin Dial	2004	Case series (n = 15)	Level 4
flowguard peelable	evaluation of a valved				
introducer	introducer sheath for				5,
	the insertion of				
	tunneled hemodialysis				
	catheters.				

Levitronix centrimag	The CentriMag: a	Heart Surg Forum	2004	Case series (n = 11)	Level 4
extracorporeal blood	new optimized				
pumping system,	centrifugal blood				
model 1-100	pump with levitating				
	impeller.				
Outback catheter	The outback catheter:	Cardiovasc Intervent	2004	Case series (n = 10)	Level 4
	a new device for true	Radiol			
	lumen re-entry after	K .			
	dissection during				
	recanalization of	9/.			
	arterial occlusions.				
Gambro prismaflex	First clinical trial for a	Int J Artif Organs	2004	Case series (n = 13)	Level 4
and gambro	new CRRT machine:				
prismaflex m60 &	the Prismaflex.				
m100 sets					
Impella recover LP	Initial experience with	Ann Thorac Surg	2004	Case series (n = 6)	Level 4
2.5 percutaneous	miniature axial flow				
cardiac support	ventricular assist			C//_	
system	devices for				
	postcardiotomy heart				
	failure.				5 /

Biopsy handy, MRI	A new safe and stable	Chest	2004	Case series (n = 13)	Level 4
biopsy handy	spiral wire needle for				
	thoracoscopic				
	resection of lung				
	nodules.				
Contegra®	Contegra pulmonary	J Card Surg	2004	Case series (n = 60)	Level 4
Pulmonary Valved	valved conduits cause				
Conduit, Models 200	no relevant	K .>			
(unsupported) and	hemolysis.	/3.			
200S (supported)		9/.			
Microcuff pediatric	Tracheal sealing	Paediatr Anaesth	2004	Randomised trial (n =	Level 2
endotracheal tube	characteristics of			80)	
	pediatric cuffed				
	tracheal tubes.				
Cardiovention corx	A new	Eur J Anaesthesiol	2004	Case series (n = 10)	Level 4
system, model FG	cardiopulmonary		, (4)	▶.♦	
0001	bypass circuit with				
	reduced foreign			C//_	
	surface (CorX): initial				
	clinical experience				
	and implications for				5,
	anaesthesia				
	management.				

ACMI vista CTR	First clinical	J Endourol	2004	Case series (n = 36)	Level 4
bipolar loop electrode	experience with new				
	transurethral bipolar				
	prostate				
	electrosurgery				
	resection system:				
	controlled tissue				
	ablation (coblation	K .*			
	technology).	/3.			
MO.MA ultra	First clinical	Eur J Vasc Endovasc	2004	Case series (n = 42)	Level 4
proximal cerebral	experiences with an	Surg			
protection device,	endovascular				
model mus0130069x6	clamping system for				
	neuroprotection				
	during carotid				
	stenting.		.61	▶.♦	
1.5T 32-channel head	New partially parallel	Eur Radiol	2004	Case series (n = 6)	Level 4
coil and 3T 32-	acquisition technique			(6/)	
channel head coil	in cerebral imaging:				
	preliminary findings.				

- Box 1. FDA processes.
- 510(k) is a premarketing submission to demonstrate that a device is as safe and effective, that is "substantially equivalent", to a legally

BMJ

Regulatory approval of new medical devices

- market device.
- Premarket Approval (PMA) contains sufficient valid scientific evidence to provide reasonable assurance that the device is safe and
- effective for its intended use or uses.
- . from the effective Humanitarian Use Device (HUD) is similar to PMA, but is exempt from the effectiveness requirements; it is intended for devices
- that benefit patients with rare disease.

https://mc.manuscriptcentral.com/bmj