20 research outputs found

    Assaying Environmental Nickel Toxicity Using Model Nematodes

    Get PDF
    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species

    Population Epigenomics

    No full text
    Epigenetics is the study of molecular-level mechanisms resulting in heritable changes in phenotype not due to DNA sequence changes. Epigenetic variation can change in response to environmental conditions, which allows for the examination of within-generation environmental response. This is one reason epigenetics could lend new insight into population-level processes. Population-level studies are currently rare, but because environment can affect phenotype we must show that findings from controlled epigenetic systems matter in natural populations. In this chapter, we emphasize studies in nonmodel organisms and in natural populations examining epigenetic response to ecological conditions. Future studies should incorporate experimental validation of stable versus induced epigenetic changes and modification of current statistical approaches
    corecore