65 research outputs found

    Theoretical investigation of nitrogen-vacancy defects in silicon

    Get PDF
    Nitrogen-vacancy defects are important for the material properties of silicon and for the performance of silicon-based devices. Here, we employ spin polarized density functional theory to calculate the minimum energy structures of the vacancy-nitrogen substitutional, vacancy-dinitrogen substitutionals, and divacancy-dinitrogen substitutionals. The present simulation technique enabled us to gain insight into the defect structures and charge distribution around the doped N atom and the nearest neighboring Si atoms. Using the dipole–dipole interaction method, we predict the local vibration mode frequencies of the defects and discuss the results with the available experimental data

    Carbon related defects in irradiated silicon revisited

    Get PDF
    Electronic structure calculations employing hybrid functionals are used to gain insight into the interaction of carbon (C) atoms, oxygen (O) interstitials, and self-interstitials in silicon (Si). We calculate the formation energies of the C related defects C(i)(Si(I)), C(i)O(i), C(i)C(s), and C(i)O(i)(Si(I)) with respect to the Fermi energy for all possible charge states. The C(i)(Si(I))(2+) state dominates in almost the whole Fermi energy range. The unpaired electron in the C(i)O(i)(+) state is mainly localized on the C interstitial so that spin polarization is able to lower the total energy. The three known atomic configurations of the C(i)C(s) pair are reproduced and it is demonstrated that hybrid functionals yield an improved energetic order for both the A and B-types as compared to previous theoretical studies. Different structures of the C(i)O(i)(Si(I)) cluster result for positive charge states in dramatically distinct electronic states around the Fermi energy and formation energies

    Distinct Populations of Hepatic Stellate Cells in the Mouse Liver Have Different Capacities for Retinoid and Lipid Storage

    Get PDF
    Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury
    corecore