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ABSTRACT
Nitrogen-vacancy defects are important for the material properties of silicon and for the performance of silicon-based devices. Here, we
employ spin polarized density functional theory to calculate the minimum energy structures of the vacancy-nitrogen substitutional, vacancy-
dinitrogen substitutionals, and divacancy-dinitrogen substitutionals. The present simulation technique enabled us to gain insight into the
defect structures and charge distribution around the doped N atom and the nearest neighboring Si atoms. Using the dipole–dipole interaction
method, we predict the local vibration mode frequencies of the defects and discuss the results with the available experimental data.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0075799

I. INTRODUCTION

Defects are present in silicon mainly because of crystal growth
and processing conditions.1,2 These can impact the material prop-
erties of silicon and consequently the performance of devices.
In addition, the improvement in physical properties through the
introduction of dopants is common in semiconductors.1,2

Here, we focus on nitrogen (N), which is important for pro-
cessing devices, as it can lock dislocations and consequently increase
the mechanical strength of wafers.3 In turn, this is significant for
the very large scale integration (VLSI) and ultra-large-scale inte-
gration (ULSI) technologies of Si as it permits the Si wafer to
undergo a range of processing steps without breaking. In practical
terms, the introduction of N results in larger wafers with improved
mechanical stability and wafer flatness. The positive impact of N
includes the suppression of the negative effect of metal contami-
nants4 and the reduction in voids and microdefects (for example,
A-swirls and D-defects) during float-zone crystal growth.5,6 Impor-
tantly, the interaction of N with oxygen-related defects affects
the formation of thermal donors in Si, influencing the electrical

properties of Czochralski grown Si.7 It is also beneficial as it prevents
the formation of A-centers8 and enhances oxygen precipitate for-
mation.9 To summarize, N influences the mechanical, optical, and
electrical properties of Si.10

Under equilibrium conditions, the solid solubility of N in Si is
low (4.5–10 × 1015 atoms/cm3 near the melting point) compared
to that of O and C that are common impurities in Si.11 Typically,
N interacts with self-interstitials, C and O, but the interaction with
vacancies is limited as their concentration is less.11 Nevertheless,
when considering non-equilibrium conditions (such as irradiation),
there can be a supersaturation of vacancies that can lead to a signif-
icant concentration of nitrogen-vacancy defects. Here, we focus on
the nitrogen-vacancies as there are still undetermined issues regard-
ing their structure and properties, irrespective of the significantly
available literature.12–16

In the present study, we employ density functional theory
(DFT) to study the structure and properties of the vacancy-nitrogen
substitutional, vacancy-dinitrogen substitutional, and divacancy-
dinitrogen substitutional defects in Si. For the minimum energy
structures, we employ the dipole–dipole interaction method to
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predict the local vibration mode (LVM) frequencies of these
defects.

II. METHODOLOGY
We used a DFT code VASP (Vienna Ab initio Simulation Pack-

age)17 to perform all calculations. This code uses plane wave basis
sets and projected augmented wave (PAW) pseudopotentials18 to
solve standard Kohn–Sham equations. A plane wave basis set with
a cut-off of 500 eV was used in all calculations. 8 × 8 × 8 and 4 × 4
× 4 Monkhorst–Pack19 k-point meshes were used to model bulk Si
and defect structures, respectively. Only a small difference in total
energy (0.6 meV) was observed with further increasing k-points.
All defect calculations were performed using a supercell contain-
ing 250 atoms. The generalized gradient approximation (GGA) as
parameterized by Perdew, Burke, and Ernzerhof (PBE)20 was used
to describe the exchange-correlation energy. Full geometry opti-
mization (both atom positions and lattice constants were relaxed
simultaneously) calculations were performed with an aid of the
conjugate gradient algorithm.21 We performed single point calcu-
lations on the pre-relaxed defect configurations using the hybrid
Heyd–Scuseria–Ernzerhof (HSE) functional22 and then plotted den-
sities of states (DOSs) to see impurity states clearly. The screening
parameter (HFSCREEN) used in this study is 0.20. The fractions
of exchange and gradient correction were set to 0.25 and 0.75,
respectively. Forces on the atoms and stress tensor were less than
0.001 eV/Å and 0.002 GPa, respectively, in all relaxed configura-
tions. All calculations were performed in the absence of symmetry.
Spin polarization was introduced in all calculations. Bader charge
analysis23 was carried out to estimate the charges on the doped
atoms. The Bader charge analysis is an effective tool to estimate
the electronic charges on the atoms in the lattice. In this method,
zero flux surfaces are used to divide atoms and partition the charge

density. The following equation was used to express the zero flux
surface of the gradients of the electron density as defined by Yu and
Trinkle:24

∇ρ(r⃗)n̂ = 0, (1)

where ρ(r⃗) is the electron density and n̂ is the unit vector
perpendicular to the dividing surface at any surface point (r⃗).

Short range dispersive attraction was included in the form of
semi-empirical force field as implemented by Grimme et al.25

III. RESULTS AND DISCUSSION
A. DFT calculations
1. Crystal structure

In order to validate the quality of the basis sets and pseu-
dopotentials used in this study, we performed a series of single
point calculations on the crystal structure of cubic Si (space group
Fd3m, No : 227)26 as shown in Fig. 1(a) to obtain the equilibrium
lattice constants and bulk modulus (see Table I). The lattice con-
stants were allowed to vary within ±5% of the equilibrium lattice
constant value. Figure 1(b) shows the energy vs lattice constant curve
plotted by fitting the calculated energies in the Murnaghan equa-
tion of state.27 The calculated equilibrium lattice constant (5.45 Å)
and bulk modulus (0.87 Mbar) were in good agreement with previ-
ous experimental26,28 and the other theoretical values,28–30 showing
the efficacy of the pseudopotentials and basis sets (refer to Table I).
Cohesive energy was calculated using the following equation:

Ecoh(Si) = Eisolated
Si − Ebulk

Si , (2)

where Eisolated
Si and Ebulk

Si are the total energies of an isolated gas
phase Si atom and a Si atom in the bulk, respectively. There is good
agreement between the calculated (4.73 eV/atom) and experimental

FIG. 1. (a) Relaxed structure of Si bulk,
(b) plot of total energy vs lattice constant
and (c) and (d) DOS plots calculated for
the bulk Si using GGA and HSE function-
als, respectively. Vertical black dot lines
correspond to the Fermi energy level.
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TABLE I. Calculated lattice parameter, bulk modulus, cohesive energy, and bandgap. Corresponding experimental values are
also provided.

Parameter This study Experiment Other calculation

a = b = c (Å) 5.45 5.4326 5.42,29 5.4630

Bo (Mbar) 0.87 0.9928 0.89,30 0.92,30 0.96,30 0.9828

Ecoh (eV/atom) 4.73 4.6328 4.84,28 5.1031

Egap (eV) 0.65, 1.15 1.1732 0.60,33 0.61,34 0.71,34 1.1134

(4.63 eV/atom) values.28 The cohesive energies calculated in other
DFT simulations are slightly overestimated from this study and the
experiment.28,31 The calculated density of states (DOS) of the bulk
Si is shown in Fig. 1(c). The calculation reveals that bulk Si is a
semiconductor with a bandgap of ∼0.65 eV, which is in reasonable
agreement with an experimental value of 1.17 eV32 and good agree-
ment with the values obtained from other DFT calculations.32,33 The

underestimation of bandgap is very common in GGA-PBE calcula-
tions.34 Hybrid functionals can provide a good bandgap prediction
although calculations are computationally expensive.35,36 We per-
formed single point calculation on the pre-relaxed configuration of
bulk Si using HSE functional, and then DOS calculation was per-
formed. The bandgap value was estimated to be ∼1.15 eV, which is
in good agreement with the experimental value of 1.17 eV.32

FIG. 2. (a) Relaxed structure of N-substituted Si, (b) tetrahedral units showing bond distances, bond angles, and the Bader charges in the relaxed configurations of Si and
N-substituted Si, (c) charge density plot showing the bonding interaction of N, (d) band-decomposed charge density plot associated with the N, (e) total DOS plot, and (f)
atomic DOS plot of N.
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2. Nitrogen doped Si
A single N atom was substitutionally doped on the Si site. The

relaxed structure shows that the N atom forms a tetragonal unit
(NSi4) with almost identical bond angles (Si–N–Si) compared to the
Si–Si–Si bond angles of the SiSi4 unit in the bulk Si. The N–Si bond
lengths are shorter (by ∼0.3 Å) than the Si–Si bond lengths [see
Figs. 2(a) and 2(b)]. The bond-lengths, bond-angles, and Bader
chargers were compared with those calculated using fixed volume
relaxations. The results demonstrate that lattice constants and lattice
angles of the defect supercells did not deviate from the ideal supercell
considerably (see Fig. S1 in the electronic supplementary material).
The bonding interaction between the N and the Si is shown by plot-
ting a charge density map [see Fig. 2(c)]. The strong bonding nature
is evidenced by the shorter N–Si bond lengths. This is further con-
firmed by the negative Bader charge on the N atom and the positive
Bader charges on the Si in the NSi4 tetrahedral unit. According to
the Bader charge analysis, the N atom gains approximately three

electrons from the nearest neighbor Si atoms [see Fig. 2(b)]. This
is due to the higher electronegativity of N (3.04) than Si (1.90).37

The substitution of N leaves approximately three positive charges in
the lattice, and they are almost equally distributed on the four near-
est neighboring Si atoms [see Fig. 2(b)]. The presence of electron
density on the N is shown in Fig. 2(d). The states appearing in the
bandgap are mainly associated with s electrons of N. The p-states
of N are strongly localized with the lattice as these states are in the
valence band [see Figs. 2(e) and 2(f)].

Substitution energy for a single nitrogen atom to replace a
single Si atom was calculated using the following equation:

ESub = E(N:Si_supercell) + E(Si) − E(Si_supercell) −
1
2

E(N2), (3)

where E(N:Si_supercell) is the total energy of a single N atom substitu-
tionally doped in the Si supercell, E(Si_supercell) is the total energy of
the defect free Si supercell, E(Si) is the energy of a Si atom in the

FIG. 3. (a) Relaxed structure of a single N atom substitutionally doped on the Si site in the presence of a Si vacancy closer to the dopant, (b) a structural unit showing bond
distances, bond angles, and Bader charges around the dopant, (c) charge density plot associated with the VN pair, (d) band-decomposed charge density plot around the N
atom, (e) total DOS plot of N-doped Si structure, and (f) atomic DOS plot of N.
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bulk Si, and E(N2) is the total energy of a N2 molecule. Substitution
energy is endothermic (0.50 eV), inferring the strong Si–Si bond in
the bulk Si. However, the doping process can be practically possible
at moderate temperatures.

The energy to incorporate single N atoms on the pre-existing Si
vacancy defect was calculated according to the following equation:

EInc = E(N:Si_supercell) − EVSi :supercell −
1
2

E(N2), (4)

where EVSi :supercell is the total energy of the supercell consisting of a
Si vacancy. The incorporation energy is −3.01 eV, suggesting that
the N prefers to occupy the vacancy site if there is a vacancy readily
available.

3. The vacancy-nitrogen substitutional defect
Next, we performed a calculation on a single N atom doped on

the Si site closer to a pre-existing Si vacancy. Si vacancy formation
energy was calculated in the absence of N doping. The Si vacancy for-
mation energy is 3.51 eV, agreeing well with previous calculation.38

We have considered different vacancy-nitrogen substitutional defect
configurations (see Fig. S3 in the supplementary material), and the
lowest energy structure is shown in Fig. 3(a). The doped N atom
forms a distorted trigonal planar structure with three identical bond
angles of 117.8○ and three Si–N bond lengths of 1.84 Å. Formation
of this three coordinated structure is due to the presence of a near-
est neighbor Si vacancy. The presence of the Si vacancy significantly
changes the Si–N bond distances compared to those calculated in the
absence of Si vacancy [see Figs. 2(b) and (3b)]. A significant reduc-
tion of ∼0.20 Å in the N–Si bond distances is noted. This is due to
the strong bonding between the N and Si atoms as confirmed by the
higher positive Bader charges (∼+1.00) on the Si atoms than on the
Si atoms (∼+0.76), forming a tetrahedral unit with N atoms in the
absence of Si vacancy. The Bader charge analysis shows that the N
atom gains approximately three electrons from three Si atoms to
which it bonded. In the NSi4 tetrahedral unit, there is a slight dif-
ference in the bond lengths and significant perturbation in the bond
angles compared to those calculated in the regular SiSi4 of the bulk
Si. The calculated bond-lengths, bond-angles, and Bader chargers

FIG. 4. (a) Relaxed structure of two N atoms substitutionally doped on the Si sites in the presence of a Si vacancy closer to the dopants, (b) a structural unit showing
bond distances, bond angles, and Bader charges around the dopants, (c) charge density plot associated with the N–V–N cluster, (d) band-decomposed charge density plot
around the N atoms, (e) total DOS plot of the doped Si, and (f) atomic DOS plot of N.
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were not affected considerably compared to those calculated using
fixed volume relaxations (see Fig. S2 in the supplementary material).
The charge density plot shows the charge distribution around the
defects and their locations [see Fig. 3(c)]. The localization of elec-
trons around the doped N and the Si vacancy is shown in Fig. 3(d).
The total DOS plot shows that the resultant doped structure is an
n-doped band-gap material. The states appearing in the bandgap
are mainly associated with s and p electrons of N [see Figs. 3(e)
and 3(f)].

We calculated the vacancy formation energy of a Si atom in
the absence and the presence of N doping. N doping facilitates the
formation of a Si vacancy by 2.10 eV. Furthermore, we calculated
the binding energy to form a VN cluster from isolated nitrogen and
vacancy defects. The calculated binding energy is −2.10 eV, meaning
that the cluster form is more stable than the isolated form.

4. The vacancy-dinitrogen substitutional defect
Two N atoms substitutionally doped on the Si sites were consid-

ered in the presence of a single nearest neighbor Si vacancy. We have
considered different configurations (see Fig. S4 in the supplementary

material), and the lowest energy structure is shown in Fig. 4(a). As
discussed earlier, each N atom forms a three coordinated structure
with three nearest neighbor Si atoms, and the N–Si bond lengths and
bond angles are almost the same as the values calculated in the VN
configuration [see Fig. 4(b)]. The Bader charge on each N atom is
−3.11. The negative charge on the N is due to the loss of approx-
imately one electron from each three Si atoms. The charge density
plot associated with the doped N atoms together with a Si vacancy
is shown in Fig. 4(c). The band-decomposed charge density plot
around the N atom indicates that the electrons are mainly localized
on the N atoms. The total DOS plot shows that the resultant doped
configuration is still a semiconductor [see Fig. 4(e)]. The p states of
N are mainly localized in the valence band [see Fig. 4(f)]. The bind-
ing energy to form the N–V–N cluster from isolated defects (2 N
and V) is calculated to be −3.62 eV, inferring the preference of
forming the cluster.

5. The divacancy-dinitrogen substitutional defect
Here, we discuss the structures and electronic structures of

two N atoms substitutionally doped on the Si sites in the presence

FIG. 5. (a) Relaxed configuration of NSi–VSi–VSi–NSi cluster, (b) a structural unit showing Bader charges around the N atom, (c) charge density plot showing the bonding
interaction between the N and Si, (d) band-decomposed charge density plot around the N atoms, (e) total DOS plot of the doped configuration, and (f) atomic DOS plot of N.
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TABLE II. Binding energies calculated for the formation of V2N2 cluster.

Defect cluster formation process Binding energy (eV)

VN + VN→ V2N2 −0.79
VN2 + V→ V2N2 −1.37
2 N + 2 V→ V2N2 −4.99

of two Si vacancies. We have considered different configurations
(see Fig. S5 in the supplementary material), and the lowest energy
structure is shown in Fig. 5(a). Negative Bader charge (−3.12) on
each N is donated by the three Si atoms (∼1.05e from each Si) [see
Fig. 5(b)]. A distorted trigonal planar unit (NSi3) is formed by the
doped N and three Si atoms, as seen previously. Shorter N–Si bonds
(1.84 Å) confirm the strong bonding nature between the N and Si.
The cross-sectional charge density plot shows the bonding interac-
tion between the N and Si in the NSi3 unit [see Fig. 5(c)]. Electron
density around the N atoms is shown in Fig. 5(d). The total DOS
plot shows that the resultant structure introduces gap states [see
Fig. 5(e)]. The atomic DOS plot of N is shown in Fig. 5(f). The Fermi
energy level is localized with s and p states of N.

We calculated the binding energy for the formation of the V2N2
cluster via different routes (see Table II). For example, the bind-
ing energy of the V2N2 cluster from two VN defect clusters was
calculated using the following equation:

EBinding(V2N2) = E(V2N2) + E(Si_supercell) − 2E(NV), (5)

where E(V2N2) and E(NV) are the total energies of the supercell
consisting of V2N2 and NV defect clusters, respectively.

Binding energy is exothermic in all cases. The cluster forma-
tion from the isolated point defects (N and V) is highly exothermic
(−4.99 eV) compared to the process consisting of sub-clusters (VN
or VN2). The energy to form a single Si vacancy from the defect free
Si supercell and the supercell consisting of the VN2 cluster was cal-
culated. There is an enhancement in the formation of vacancy by
6.53 eV in the presence of the VN2 cluster.

B. Dipole–dipole interaction method
1. The vacancy-nitrogen substitutional defect

The lowest energy configuration of the nitrogen substitutional-
vacancy center (VN) defect as derived by our DFT calculations is
displayed in Fig. 6. The Si vacancy resides in the nearest neighbor site
with respect to the N substitutional. The defect includes a N atom
at a substitutional lattice site, bonded to three silicon neighboring
lattice atoms, with the fourth lattice site being vacant.

To calculate the vibrational mode frequencies of the VN defect,
we have applied a previously used procedure, based on the compar-
ison of the VN structure to similar molecular structures.39 In our
studies, the VN defect in silicon displays a C3v symmetry configura-
tion [Fig. 6(a)], also reported in the previous study by Platonenko
et al.16 This geometry is similar to the C3v pyramidal geometry
of triarsenic phosphide (As3P), shown in Fig. 6(b).40,41 The nitro-
gen atom in the VN defect bonds to three Si lattice atoms with all
N–Si bonds being of equal length dN−Si = 1.833 Å and the nitrogen-
silicon mass ratio being equal to mN

mSi
= 0.5. In the As3P molecule, the

phosphorus–arsenic mass ratio is mP
mAs
= 0.4, a value very close to the

mN
mSi

value.
Moreover, every angle∠Si–N–Si in the VN defect provided by

our DFT results has a value of ∼119○, which lies close to the ∼109○

angle∠As–P–As value in the As3P molecule.40 In addition, in both
VN and As3P configurations, nitrogen and phosphorus atoms are
Group-V elements in the Periodic Table, exhibiting the same valence
electron orbital configuration, with valence electrons occupying p
orbitals in both elements.

Based on all previous considerations, we may assume that the
force constants of the modes of vibrating N and P atoms in the VN
and As3P configurations, respectively, are approximately the same.
As a result, the vibrating frequencies of the N and P atoms, ωVN and
ωAs3P, correspondingly relate through the formula

ωVN =

√
mP

mN
ωAs3P, (6)

where mP = 31 amu and mN = 14 amu are the atomic masses of
P and N atoms, respectively. By substituting ωAs3P = 450 cm−1

FIG. 6. (a) Lowest energy VN configu-
ration in Si. The striped circle denotes
the vacant site while blue and light gray
circles denote substitutional nitrogen and
Si atoms, respectively. (b) The As3P C3v
configuration. Green and white circles
are for phosphorus and arsenic atoms,
respectively.
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corresponding to the ν1(α1) frequency of the As3P,40 we get ωVN
= 670cm−1, a value located very close to the experimental frequency
at 66313 and 668 cm−116 of the VN defect. In a previous theoreti-
cal study, Platonenko et al.16 employed hybrid DFT and calculated
a similar structure to the VN defect in the present study; however,
their calculated band was at 654 cm−1.

2. The vacancy-dinitrogen substitutional defect
To form the VN2 defect, we introduce a further N atom at

all possible sites near the VN defect. Figure 7(a) depicts the lowest
energy configuration of the VN2 defect as derived by DFT cal-
culations. VN2 consists of a VN defect (with the nitrogen atom
denoted as NA) joined by a second nitrogen substitutional atom
(denoted as NB) at a distance dNA−NB = 4.81 Å. The second nitrogen
atom inserted in the vicinity of the VN defect also bonds to three Si
neighbors forming a tetrahedral structure with geometrical parame-
ters similar to those of VN defect. Therefore, the structure resembles
two vacancy-nitrogen defects, with the two C3 symmetry axes point-
ing toward the same vacancy. In all N–Si covalent bonds, in both
vacancy-nitrogen pairs comprising the VN2 defect, the overlapping
orbitals of different N and Si atomic radii are expected to cause an
imbalance in electron density and lead to a region of partial nega-
tive charge δ− [Fig. 7(b)] closer to the smaller N atom.42 This charge
accumulation, combined with the symmetry criteria that the two VN
pairs fulfill, leads to a total dipole moment pt [Fig. 2(c)] fixed upon
the nitrogen atom, in the direction of the C3 axis.42 This total dipole
moment results from the contributions of the components of the
three individual N–Si bonds in the C3 axis, in both vacancy-nitrogen
pairs of the VN2 defect [refer to Fig. 7(c)].42

It is known that in a very approximate consideration,42 the
dipole moment of every N–Si bond could be taken equal to the elec-
tronegativity difference ΔχN−Si of N and Si atoms, in Debye units.
However, in this work, we have used a reported approximation for
the calculation of the partial charge δ on the nitrogen atom43 based
on Pauling’s formula.44,45 Thus, the partial charge δ on the nitrogen
atom could be given by the relation

δ = [1 − e−0.25(ΔχN−Si)
2

]∣e∣, (7)

where ΔχN−Si = χN − χSi = 1.15, with χN = 3.066 and χSi = 1.916
being the Allen scale electronegativity values of nitrogen and silicon,
respectively,46 and e is the electron charge. We finally compute the
value δ = 0.282∣e∣.

The two VN dipoles have total dipole moments pt,A and pt,B,
which are the resultants of the three components of the individual
N–Si dipole moments, p, in the nitrogen-vacancy direction. As seen
in Fig. 7(c), in the two VN geometries, every N–Si bond creates a
dipole moment p = δ ⋅ r, where δ is the charge fixed on the nitro-
gen atoms and r is the vector pointing from the Si to the N atom.
Assuming the dipoles oscillate along the nitrogen-vacancy direc-
tions, which shall be noted as qA and qB, the total dipole moments
pt,A and pt,B are given by the relations

pt,A = 3 ⋅ δ ⋅ cos θ ⋅ (r + qA)q̂A, pt,B = 3 ⋅ δ ⋅ cos θ ⋅ (r + qB)q̂B,
(8)

where r is the N–Si bond lengths, θ is half of the∠Si–N–Si angles, qA
and qB denote the displacements of the two vibrating nitrogen atoms
along the qA and qB directions, respectively, and q̂A and q̂B are the
corresponding unit vectors.

The calculation of the LVM frequencies of the VN2 defect
employs a previously used method,47–50 based on the interaction of
the two oscillating dipoles.

The force constant for both VN dipoles is KVN and is given by
the relation

KVN = mN(ωVN)
2, (9)

where ωVN is the LVM frequency of the VN defect at 663 cm−1.13

The potential energy of the interacting dipole moments of
relation (7) is given by51

Uint =
1

d3
NA−NB

[pt,A ⋅ pt,B − 3(n̂ ⋅ pt,A)(n̂ ⋅ pt,B)], (10)

where n̂ is the unit vector along the direction that connects the
two dipoles and dNA−NB = 4.81 Å is the distance between them. The
motion of the two dipoles is described by the effective Hamiltonian

H =
1
2

mN q̇2
A +

1
2

mN q̇2
B +

1
2

KVN q2
A +

1
2

KVN q2
B + λqAqB. (11)

FIG. 7. (a) VN2 configuration in Si. The
striped circle denotes the vacant site
while blue and light gray circles denote
substitutional nitrogen and Si atoms,
respectively. (b) The dipole moment p
of the nitrogen atom due to the partial
charges δ− and δ+ in nitrogen and sil-
icon atoms, respectively. (c) The dipole
moments p of the three individual N–Si
bonds in the directions of these bonds
and the total dipole moment pt fixed on
the nitrogen atom corresponding to the
resultant of the three components of the
individual dipole moments p in the direc-
tion passing through the nitrogen atom
and being vertical to the base of the
N–Si3 pyramids (the Si–Si–Si plane). θ
is half of the∠Si–N–Si angle.
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By comparing Eqs. (9) and (10), we obtain the q-independent part
λ to be equal to λ = 0.68J/m2. The Hamiltonian of Eq. (10) has two
normal modes with frequencies

ωVN2 =

¿
Á
Á
ÁÀ

1
2

⎡
⎢
⎢
⎢
⎢
⎣

ω2
VNA
+ ω2

VNB
±

¿
Á
ÁÀ(ωVNA − ωVNB)

2
+

4λ2

m2
N

⎤
⎥
⎥
⎥
⎥
⎦

. (12)

By substituting ωVNA = ωVNB = 663 cm−1 in Eq. (12), we find ω(ant)
VN2

= 664 cm−1 and ω(sym)
VN2

= 662 cm−1, corresponding to the antisym-
metric normal mode (with the “+” sign inside the square root) and
the symmetric one (with the “−” sign inside the square root), respec-
tively. The modes ω(ant)

VN2
= 664 cm−1 and ω(sym)

VN2
= 662 cm−1 are

remarkably close to the reported IR active A and A′ modes at 672
and 669.1 cm−1, respectively, of the VN2 defect.13

3. The divacancy-dinitrogen substitutional defect
Following the same procedure, we removed a further Si atom to

create the second vacancy. Although we tried all the available posi-
tions for this second vacancy in the supercell, the most favorable
position is with the two vacancies being close together. From a phys-
ical viewpoint, this can be explained because in the nearest neigh-
bor site configuration, there is a reduction in the dangling bonds.
Figure 8 shows the schematic representation of the lowest energy
configuration of the V2N2 defect. The V2N2 defect consists of a VN2
defect with the second vacant lattice site being the nearest neigh-
bor to the first one. According to DFT outcomes, in V2N2 defect, all
N–Si bonds and∠Si–N–Si angles have the same values as in the case
of VN2 defect, and the distances between the two nitrogen atoms are
equal in both defects (dNA−NB = 4.81 Å).

As expected, after applying the dipole–dipole interaction
method, this structural resemblance has resulted in the same

FIG. 8. V2N2 configuration in Si. Striped circles denote vacant sites while blue and
light gray circles denote substitutional nitrogen and Si atoms, respectively. V2N2
consists of a VN2 defect with the second vacancy being the nearest-neighbor to
the first one.

values for the LVM frequencies of the V2N2 defect, that is, at 664
and 662 cm−1, as in the case of VN2 defect. This is in agreement
with the reported difference of only 1 cm−1 in the two calculated
more intense LVM bands of the VN2 and V2N2 defects at 675 and
676 cm−1, respectively.16

IV. CONCLUSIONS
The aim of the present work was to study the vacancy-nitrogen

defects in Si. DFT calculations were employed to calculate the most
energetically favorable structures of the VN, VN2, and V2N2 defects
in Si. All the vacancy-nitrogen defects considered here are strongly
bound, and therefore, they will readily form in a Si lattice pro-
vided that there is sufficient concentration of nitrogen and vacancies.
A common feature is that the electrons are mainly localized on
the N atoms. In these derived structures, we used the established
dipole–dipole interaction method to calculate the LVM frequen-
cies. For the VN defect, we calculate a frequency of 670 cm−1, in
excellent agreement with previous experimental studies (663 and
668 cm−1).13,16 Considering the VN2 defect, we report here two
frequencies at 664 and 662 cm−1, which are consistent with the
672 and 669.1 cm−1 calculated by Goss et al.13 Notably, the struc-
tural resemblance of the VN2 and V2N2 defects leads to the same
frequencies.

SUPPLEMENTARY MATERIAL

See the supplementary material for the configurations (N-
doped Si and N-doped Si with vacancy) obtained using full geom-
etry optimization and fixed cell geometry optimization together
with bond-lengths, bond-angles, and Bader chargers. Different
configurations of NV, N2V, and N2V2 defects are also provided.
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