29 research outputs found
Applied Cyberpsychology: Military and Defence Applications
Virtual environments are synthetic computer simulations that represent activities at a high degree of realism. Virtual environments have numerous applications for military and defence purposes, ranging from allowing personnel to experience realistic, high-pressure situations with a sense of presence, but in the absence of real world risk, to modelling threats to national and international infrastructure to improve resilience. Emerging opportunities also exist for communication and intelligence gathering, exploring on-line social cognition and group behaviour, and understanding how to mitigate the negative effects of combat-related stress disorders, for example. In this chapter we introduce psychological theory and contemporary cyberpsychology research, and offer an albeit very brief introduction to the rapidly developing application of technology to better understand human behaviour and facilitate performance for military and defence purposes
Ice algal bloom development on the surface of the Greenland Ice Sheet
It is fundamental to understand the development of Zygnematophycean (Streptophyte) micro-algal blooms within Greenland Ice Sheet (GrIS) supraglacial environments, given their potential to significantly impact both physical (melt) and chemical (carbon and nutrient cycling) surface characteristics. Here, we report on a space-for-time assessment of a GrIS ice algal bloom, achieved by sampling an ∼85 km transect spanning the south-western GrIS bare ice zone during the 2016 ablation season. Cell abundances ranged from 0 to 1.6 × 104 cells ml−1, with algal biomass demonstrated to increase in surface ice with time since snow line retreat (R2 = 0.73, P < 0.05). A suite of light harvesting and photo-protective pigments were quantified across transects (chlorophylls, carotenoids and phenols) and shown to increase in concert with algal biomass. Ice algal communities drove net autotrophy of surface ice, with maximal rates of net production averaging 0.52 ± 0.04 mg C l−1 d−1, and a total accumulation of 1.306 Gg C (15.82 ± 8.14 kg C km−2) predicted for the 2016 ablation season across an 8.24 × 104 km2 region of the GrIS. By advancing our understanding of ice algal bloom development, this study marks an important step toward projecting bloom occurrence and impacts into the future
'Education, education, education' : legal, moral and clinical
This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students
The design, implementation, and performance of the LZ calibration systems
LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments
New constraints on ultraheavy dark matter from the LZ experiment
Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/c2 to a few TeV/c2. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a reanalysis of the first science run of the LZ experiment, with an exposure of 0.9 tonne×yr, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 1017 GeV/c2.
Published by the American Physical Society
2024
</jats:sec
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Intelligence Interviewing: Synthetic Environments, Cognition and Cognitive Styles
For the foreseeable future, gathering information from others is likely to remain a fundamental goal for those concerned with protecting national and international security. A central challenge facing all information gatherers is to identify howa sender (the information collector) might ‘manage’ a receiver (the information holder) to best effect, that is how to encourage the receiver to move from a position of witholding to imparting information. Additional challenges arise from recent moves away from coercive, interrogative methods towards intelligence interviewing, and the increasing use of synthetic environments as communication channels, and so how senders might persuade receivers when interacting in synthetic environments. Here we disciss how the information gathering literature, with reference to intelligence interviewing, might advance in the face of such change, suggesting that those tasked with developing bespoke plans, or operational accords might wish to consider social cognition and cognitive styles theory to support positive outcomes in synthetic environments, without commanding them
Recommended from our members
Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England
We report on an assessment of the potential for energy production from on-farm anaerobic digestion (AD) in England based on findings from a survey of farmers where it was found that around 40% of 381 respondents might install AD on their farms. These ‘possible adopters’ tended to have large farms and might together utilise some 6560 ha of land for feedstock production along with the wastes from some 12,000 beef and dairy cattle and 9000 pigs. When raised to the national level, such a level of AD activity would produce around 3.5 GWh of electricity. This approximates to just 0.001% of national electricity generation. Further, there are considerable perceived barriers to the widespread adoption of AD on farms in England; these include the high capital costs of installing AD and doubts about the economic returns being high enoug