177 research outputs found

    Performance evaluation of TCP-based applications over DVB-RCS DAMA schemes

    Get PDF
    Transmission Control Protocol (TCP) performance over Digital Video Broadcasting-Return Channel via Satellite (DVB-RCS) standard is greatly affected by the total delay, which is mainly clue to two components, propagation delay and access delay. Both are significant because they are dependent oil the long propagation path of the satellite link. I-lie former is intrinsic and due to radio wave propagation over the satellite channel for both TCP packets and acknowledgements. It is regulated by the control loop that governs TCP. The latter is due to the control loop that governs the demand assignment Multiple access (DAMA) signalling exchange between satellite terminals and the network control center. necessary to manage return link resources. DAMA is adopted in DVB-RCS standard to achieve flexible and efficient use of the shared resources. Therefore, performance of TCP over DVB-RCS may degrade due to the exploitation of two nested control loops also depending oil both file selected DAMA algorithm and the traffic profile. This paper analyses the impact of basic DAMA implementation oil TCP-based applications over a DVB-RCS link for a large Set Of study Cases. To provide a detailed overview of TCP performance in DVB-RCS environment, the analysis includes both theoretical approach and simulation campaign. Copyright (C) 2009 John Wiley & Sons, Ltd

    Cross-layer architecture for a satellite-Wi-Fi efficient handover

    Get PDF
    To achieve fully mobile communications, considering different environments and modern service requirements, a multiple-segment architecture is the most suitable to guarantee service continuity with acceptable performance. Handover (HO) procedures can be invoked either out of necessity (if the current network connection is going off) or to improve performance (if different bandwidth or quality of service is required). In this scenario, to provide uninterrupted communication services, efficient intersegment HO capability must be implemented. The architecture considered includes a satellite segment and a number of Wi-Fi hot spots. A mobile node (MN) can switch from a segment to other exploiting services of mobile Internet protocol (MIP). This architecture introduces great flexibility and ensures capillary coverage; it also strongly affects Transmission Control Protocol (TCP)-based application performance. To efficiently face HO consequences, particularly when the TCP runs as a transport protocol, an innovative protocol architecture based on cross-layer (CL) exchange of information is proposed. Analyses of TCP dynamics during HOs and the performance improvement introduced with the proposed CL architecture, evaluated through the network simulator Ns-2, are presented

    CAC-TCP cross-layer interaction in a HAPS-satellite integrated scenario

    Get PDF
    The integration of a satellite system with a HAPS segment appears very suitable to provide communication services, including Internet access, for a large set of applications. In fact, the-satellite capability to provide wide coverage and broadband access can be enhanced by the use of cost-effective, mobile/portable and low-power consuming user terminals, when HAPS acts as an intermediate repeater. Moreover, also TCP-based applications, which suffer from long latency introduced by the satellite link and in general by errors, can get benefits in terms of end-to-end performance. In this frame, this paper deals with the introduction, on board the HAPS, of an efficient CAC scheme in order to guarantee an optimal utilization of the precious radio resources. In particular, we propose an innovative TCP driven CAC algorithm, which shall take into account not only the QoS requirements, but also TCP statistics obtained through a proxy installed on the HAPS. Results show that the overall system performance in terms of both average throughput and blocking probability is significantly improved

    A cross-layer architecture for satellite network security: CL-IPsec

    Get PDF
    Cross-layer architectures (CLAs) are proposed to improve performance in networks where physical layer impairments are unpredictable and provision of security services may be challenging, as in satellite networks. This paper proposes an extension to the IPsec protocol, named Cross-Layer IPsec (CL-IPsec), able to provide authentication and integrity services through a cross-layer architecture when the adopted protocol is UDP-Lite. This is suitable for multicast applications that are cost-effectively provided by satellite systems. A satellite emulation platform has been used to validate the CL-IPsec implementation and to evaluate the performance improvement derived from the proposed CLA. © 2008 IEEE

    Performance Evaluation of a Satellite Communication-based MEC architecture for IoT applications

    Get PDF
    New scenarios and use cases are raising following the birth of the fifth generation of mobile communications. The Internet of Things (IoT) is one of the main use cases which are growing, leading to a massive amount of data that need to be exchanged throughout the Internet. Satellite communication networks are essential in remote and isolated environments and can support fully connected environments by offloading the terrestrial infrastructure concerning delay–tolerant traffic flows. However, satellite network resources are limited and expensive, so they need to be carefully used in order to avoid waste and satisfy the required user performance. The multi-access edge computing (MEC) concept can be exploited in this context to allow data preprocessing at the edge, i.e., close to the users, so reducing the amount of data that has to traverse the backhaul satellite link and, in some cases, reducing data delivery times. This article analyses the performance of a satellite architecture in the IoT framework highlighting the advantages brought by MEC, also including data aggregation and compression techniques

    Network layer security: Design for a cross layer architecture

    Get PDF
    Traditional modular layering schemes have served a major part in the development of a variety of protocols. However, as the physical layer impairments become more unpredictable, a cross layer design (CLD) which is dynamic in nature provides better performance. CLD introduces new challenges in protocol design as well as in the area of security. Using numerical analysis, we show that a link layer design employing header compression and cross layer signalling to protect protocol headers can limit packet discarding. This paper also reviews the IPsec protocol and describes how IPsec can be modified for cross layer architecture. © 2007 IEEE

    A Virtual PEP for Web Optimization over a Satellite-Terrestrial Backhaul

    Get PDF
    The availability of network softwarization and virtualization technology in the field of telecommunications has opened the door to a radical review of the applications, protocols, and deployment models. In this evolving framework, old assumptions and constraints specific to satellite communications must be carefully re-assessed. To this aim, we revisit the role of the performance enhancing proxy (PEP), replaced by a chain of custom virtual network functions properly enabled to optimize common web traffic performance over a backhaul dynamically enabled with a supplementary satellite link. The resulting virtual PEP (vPEP) is compliant with the breakthrough virtualization and slicing paradigms and can fruitfully exploit the advanced features of the most recent IETF technologies such as QUIC and MPTCP

    The “www” of Xenopus laevis Oocytes: The Why, When, What of Xenopus laevis Oocytes in Membrane Transporters Research

    Get PDF
    After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still essential in many research fields. New approaches and revised protocols, but also classical methods, such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed, and the kinds of experiment that are still useful to perform with this kind of cell are reported. Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that correctly targets functional proteins at the defined compartment. This small protein factory can produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are required to obtain high expression and to verify the functionality. The methodologies examined here are mainly related to research in the field of membrane transporters. This work is certainly not exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions and detailed indications when investigating the functionality and expression of the different members of the solute carrier families

    Transport layer protocols and architectures for satellite networks

    Get PDF
    Designing efficient transmission mechanisms for advanced satellite networks is a demanding task, requiring the definition and the implementation of protocols and architectures well suited to this challenging environment. In particular, transport protocols performance over satellite networks is impaired by the characteristics of the satellite radio link, specifically by the long propagation delay and the possible presence of segment losses due to physical channel errors. The level of impact on performance depends upon the link design (type of constellation, link margin, coding and modulation) and operational conditions (link obstructions, terminal mobility, weather conditions, etc.). To address these critical aspects a number of possible solutions have been presented in the literature, ranging from limited modifications of standard protocols (e.g. TCP, transmission control protocol) to completely alternative protocol and network architectures. However, despite the great number of different proposals (or perhaps also because of it), the general framework appears quite fragmented and there is a compelling need of an integration of the research competences and efforts. This is actually the intent of the transport protocols research line within the European SatNEx (Satellite Network of Excellence) project. Stemming from the authors' work on this project, this paper aims to provide the reader with an updated overview of all the possible approaches that can be pursued to overcome the limitations of current transport protocols and architectures, when applied to satellite communications. In the paper the possible solutions are classified in the following categories: optimization of TCP interactions with lower layers, TCP enhancements, performance enhancement proxies (PEP) and delay tolerant networks (DTN). Advantages and disadvantages of the different approaches, as well as their interactions, are investigated and discussed, taking into account performance improvement, complexity, and compliance to the standard semantics. From this analysis, it emerges that DTN architectures could integrate some of the most efficient solutions from the other categories, by inserting them in a new rigorous framework. These innovative architectures therefore may represent a promising solution for solving some of the important problems posed at the transport layer by satellite networks, at least in a medium-to-long-term perspective. Copyright (c) 2006 John Wiley & Sons, Ltd
    • …
    corecore