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Abstract: After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still
essential in many research fields. New approaches and revised protocols, but also classical methods,
such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and
old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed,
and the kinds of experiment that are still useful to perform with this kind of cell are reported.
Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that
correctly targets functional proteins at the defined compartment. This small protein factory can
produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are
required to obtain high expression and to verify the functionality. The methodologies examined
here are mainly related to research in the field of membrane transporters. This work is certainly not
exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions
and detailed indications when investigating the functionality and expression of the different members
of the solute carrier families.

Keywords: Xenopus oocyte; solute carrier; two-electrode voltage clamp; fluorophores; RNA microinjection;
membrane transplantation; membrane transporter; immunochemistry; single-oocyte chemiluminescence

1. Introduction

Fifty years after the first heterologous expression of a protein in Xenopus laevis, it
is necessary to wonder why it is still used in membrane protein studies, when it is the
appropriate model, and, finally, what kinds of experiments are worthwhile to perform
with these cells. Xenopus laevis oocytes have been used for a long time in the study of
membrane proteins, particularly in the functional characterization of transporters and
channels, and they are specific model systems. Xenopus laevis oocytes are fully equipped
with translational machinery [1–3] as the full-grown oocyte is a repository of maternal
mRNAs and proteins ready for early embryogenesis; these tools can be exploited to translate
and correctly localize exogenous, microinjected RNAs. Consequently, the expression of
heterologous proteins is usually very high with a very low background signal. A great
number of endogenous electrogenic proteins and membrane conductance are characterized
and known [4–14]. The multimeric proteins are correctly assembled (more details are
reported in these references [15–18]), and the biophysical parameters are comparable to
those collected with different approaches in the primary culture [19], cell line [20,21],
and native membrane environment [22]. Moreover, they are giant cells; a mature oocyte
has a diameter of about 1–1.2 mm; and they can be easily prepared, injected, and tested
with different approaches. In this review, different examples of applications, tricks, and
protocols useful for characterizing membrane protein are reported (Figure 1) with the goal
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of suggesting new and old methods to solve problems in membrane transporter studies,
showing how Xenopus oocytes are still a formidable tool for studying a large variety of
significant biological questions.
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Figure 1. Schematic drawing of use and applications of Xenopus laevis oocytes. Each section repre-
sents a possible use of X. laevis oocytes described in this paper. The use of oocytes as a heterologous 

Figure 1. Schematic drawing of use and applications of Xenopus laevis oocytes. Each section repre-
sents a possible use of X. laevis oocytes described in this paper. The use of oocytes as a heterologous
expression system allows amplification of the signal and characterization of defined membrane
protein(s) starting from cRNA or the original membrane where the protein(s) was previously ex-
pressed. Isolated tissue from human or animal models can be microtransplanted in X. laevis oocytes
studying a plethora of channels and receptors with native properties maintained in the native en-
vironment. Chromatography and spectrofluorimetric procedures can be performed to quantify the
presence of substrate inside the Xenopus laevis oocytes. Electrogenic membrane proteins can be
investigated via TEVC. X. laevis oocytes injected with cRNA of interest or transplanted with tissue
samples can be also tested for function using radiolabelling or fluorimetric assay and for expression
by immunochemistry techniques.
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2. Xenopus laevis Oocytes as a Heterologous System of Expression
2.1. mRNA Injection

In the early 1970s, Gurdon [23–26] reported the capability of amphibian oocytes to
translate foreign mRNA. Ten years later, Sumikawa [27] and Miledi [28–30] expressed and
studied functional membrane proteins.

Xenopus laevis oocytes have a highly efficient biosynthetic apparatus that performs all
the post-translational modifications needed for correct protein targeting and function; it is
possible to co-express different proteins or subunits by co-injections of the corresponding
mRNAs [31]. After 48–72 h, if the cRNA is transcribed from a suitable plasmid construct
(see the indication in Appendix A), the proteins are translated into exogenous proteins
ready to be tested for their functionality. It is necessary to remember that the expression is
transient, according to the stability of the mRNA and the half-life of the protein; it lasts for
two to seven days. In the culture medium, the selected and the injected oocytes can stay
healthy for many days. They can be used with the method described here for about 10 days
from the collection day.

2.2. Membrane Microtransplantation from Native Tissues

The possibility of studying the properties of heterologous proteins is not limited to
mRNA injection. An effective tool for studying exogenous proteins is also offered by
the technique of microtransplantation of receptors and channels from native tissues into
Xenopus laevis oocytes.

Although the oocyte represents a powerful approach to studying different membrane
proteins and their functional and pharmacological properties, it is not able to completely
reflect the native environment, which could confer modifications in the functionality of
membrane proteins compared to that seen in oocytes. Interestingly, Xenopus laevis oocytes
can be used to overcome this limitation through the technique of microtransplantation
of membrane patches from human (or from other species) tissues [32,33]. This technique
allows the study of the original membrane proteins and the associated molecules, as
interaction or anchoring proteins are still embedded in their natural lipid environment.
Indeed, it is possible to investigate the neurotransmitter receptors and ion channels that
maintain all their native properties. Starting from a very small amount of tissue, the great
advantage of microtransplantation in Xenopus laevis oocytes is that it enables the use
of human samples (from autopsies or patients who have undergone surgery) to perform
functional studies. This approach has been revealed to be widely useful in many fields,
allowing the characterization of the role of membrane proteins in different human diseases,
from neurodevelopment disorders to neurodegeneration pathology, epilepsy, and chan-
nelopathies [34–39]. Particularly, membranes tissue transplantation allows the investigation
of the role of neurotransmitters, such as GABA, glutamate, and acetylcholine, in human
brain diseases where impairment of neurotransmitters or their cognate receptors or altered
levels of ion concentration can induce brain damage. This technique can also be applied
for the screening of novel drug compounds directly on active membrane proteins as hypo-
thetical targets [40,41]. Oocytes microtransplanted with membrane fragments can help us
to understand the mechanisms of action of substances (i.e., inflammatory mediators) on
the ion channels present in the original tissue [38,42]. Using the transplantation of cortical
membranes from Temporal Lobe Epilepsy (TLE) patients in Xenopus laevis oocytes, the
role of EPO in improving the functionality of the GABAA receptors was demonstrated [43].
GABAergic and glutamate transmissions have been studied in Rett syndrome through the
microtransplantation method, comparing the electrophysiological results obtained from
injected tissues from the human and murine cortexes in Xenopus laevis oocytes [44]. Via
microtransplantation of human muscle membranes, Palma et al. studied functional acetyl-
choline receptors (AChRs) isolated from muscle biopsies of patients with Amyotrophic
Lateral Sclerosis (ALS), assuming that AChR is a useful target for ALS pharmacological
therapy [45]. The above examples highlight the ability of oocytes to enable the study of
specific human pathologies from small amounts of pathological tissue without any kind
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of alteration induced by endogenous cell machinery. A single oocyte can integrate the
transplanted membrane fragments into its membrane, allowing for the direct study of ion
channels or receptors in their native environment (e.g., by TEVC). Details about membrane
preparation and microinjection are reported in Appendix A.

3. Testing the Function of Membrane Proteins

Once the proteins are correctly expressed, there are many different approaches to test
their functionality. Descriptions of some of the methods are reported in this paragraph
with relatively useful literature suggesting when the Xenopus laevis oocytes are a perfect
tool and what results can be achieved using them by which experimental approach.

3.1. Classical TEVC

The functional study of protein expressed in Xenopus laevis oocytes historically
uses electrophysiological recording by two-electrodes voltage clamp (TEVC), which is the
standard technique due to the dimension of the oocytes. The possibility of controlling the
membrane voltage allows the researcher to collect data about the ionic current in defined
experimental conditions. Membrane voltage, external solution, substrates, and agonists
can be easily applied and modified during the experiments, and it is also possible to inject
drugs, chelators, substrates, and ions inside the cell during the experiments. Specifically, a
TEVC experiment consists of the recording of the whole oocyte membrane current while
applying membrane voltage changes and/or exchanging the extracellular solution through
the perfusion system [46,47]. The change in the electrogenic ion fluxes across the membrane
is measured as a variation of the current, i.e., equal in amplitude but opposite in sign, at
the output of the amplifier connected to the current electrode. By convention, the influx
of anions (or efflux of cations) is reported as an upward deflection (outward or positive
current) and the influx of cations (efflux of anions) as a downward deflection (inward
or negative current). Some proteins drive ions in precise directions (downward with the
electrochemical gradients) as many ion channels, but some others can simultaneously
transport two or three different types of ions that may have opposite charges or that
are translocated in opposite directions [48] (also against their electrochemical gradient);
the total ion charge across the membrane is due to a movement of different charges in a
different direction.

Xenopus laevis oocytes in the 1990s had a very important role in membrane transporter
characterization. After the first solute carriers were cloned [49,50], a great amount of RNA
coding for similar proteins became available, and the main tool for their characterization
was the expression cloning technique [51], which contributed to the knowledge of the
substrates of a huge number of transporter proteins. In this paper [52], it is possible to find
an update of the technique with a comprehensible protocol.

Solute carriers are still understudied [53–55], and their roles in physiology, pathology,
drug targeting, or drug delivery are continuously growing in importance. Our experience
in investigating these proteins is the basis of the experimental suggestion described in this
review, with which we would like to help researchers to find the right methods to improve
knowledge of SLC proteins.

The possibility of expressing heterologous recombinant cDNA is fundamental not
only to understanding the function of the protein but also to identifying the role of the
different functional determinants such as single amino acids, the specific transmembrane
domain, or internal or extracellular loops. There are hundreds of examples of mutants
or chimeric proteins that anticipated the discovery of the localization or the function of
the transmembrane domains or single determinants, confirmed years later by the crystal
structure. Kanner [56,57], by cysteine scanning and mutagenesis, identified the possible role
of the first transmembrane domain of the SLC6 family established by LeuTAa structure [58].
Given the possibility of creating recombinant proteins, another interesting approach is the
construction of chimera proteins [59–63], for example, to identify the substrate and ions
binding site. The same approaches can be also used to express a protein at the plasma
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membrane even if, in vivo, it is expressed in a different compartment; this can help to
characterize the transport by TEVC in Xenopus laevis oocytes [64,65].

The possibility of changing specific residues can also modify the electrogenicity of the
transporter [66] or explain the differences between orthologs; this approach is widely used
to recognize the activity of mammalian transporters [67–73].

In the field of membrane transporters research, the possibility of working with mu-
tants, in the beginning, was the basis for understanding the structure and functional
relationship between the different domains of the proteins. After the crystal structures,
single and multiple mutants became the tools for confirming the functional role of the
regions identified by the solved structure [71,74–82].

Introducing one or multiple amino acid substitutions in membrane transporters is
quite simple because it is possible to easily modify the cDNA sequences of the original
transporters using an appropriate commercial kit or available protocols [83–85]. Once
the cDNA has the desired mutations, it can be easily transcribed, and the corresponding
cRNA and the mutated protein are produced by the oocytes. The importance of this
approach is certified by thousands of publications. In many cases, the current elicited by
the electrogenic transporter is large enough that possible reduction of the function of the
mutated transporter can be still characterized as the currents are still easily measurable.

Again, due to the size of the currents, it is also possible to appreciate changes in their
shape; this is particularly true if pre-steady-state currents are investigated. These currents
are slow, transient currents related to the presence of the transporter in the plasma mem-
brane and are only observed in oocytes expressing membrane transporters that present elec-
trogenic steps in their transport cycle (Figure 2). These currents are elicited by voltage jumps
or concentration jumps applied to oocytes expressing the transporter of interest [86–89].
The recorded currents are visible in the absence (in the majority of the cases) or even in the
presence of the substrate (in many cases for concentrations below the saturating concentra-
tion of the substrate [77,90,91]). The pre-steady-state currents are a tool for studying the
interaction between ion(s) and substrates and the transport protein during the translocation
cycle. Moreover, in some cases, they are also helpful for verifying the localization of specific
residues (i.e., charged residues) in the membrane electric field [92–96] or to determine the
apparent affinity of the transporter for a specific substrate [77].

For some transporters, the pre-steady-state currents are particularly large and repre-
sent a means for specific biophysical characterization, for example, GAT1 (slc6a1) [86,98],
SGLUT (SLC2) [99], PepT1 and 2 (SLC15) [91,94,96,100], and NaPi (SLC34) [101]. Another
interesting aspect of the heterologous expression of membrane transporter in Xenopus lae-
vis oocytes is the possibility of testing the behavior of the same cell at different temperatures
to estimate the steps of the transport cycle that require larger conformational changes. The
larger variation of the temperature coefficients (Q10) for the different parameters that can
be acquired is related to larger conformational changes involved in that specific function;
the weaker temperature sensitivity is, instead, related to the diffusional component of the
process [92,95,102–104].

Xenopus laevis oocytes have the capability of correctly expressing the different sub-
units that can be exploited to understand the role of every single subunit in the ion channels,
but, also in membrane transporter research, the role of subunits can be investigated [105],
even with a peculiar construct [106].

Xenopus laevis oocytes are also used to study reverse transport, i.e., by injecting the
substrates. This approach can be particularly helpful for understanding the interaction
with the different ions in the transport cycles [107,108]. Moreover, due to the dimension
of the cells, it is also possible to evaluate the changes in the intracellular contents, i.e., pH
changes [109]. The intracellular environment can be also changed by co-expressing ion
exchangers or with specific incubation solutions [110]. The concentration of Cl− can be
estimated [108] using the presence of endogenous CaCC (Ca2+-gated Cl− channel) [5]. This
channel, constitutively present in mature oocytes, is one of the most widely used tools in
the investigation of exogenous metabotropic receptors in Xenopus laevis oocytes. Since
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1987, when the acetylcholine- and neurotensin-evoked responses of oocytes were studied,
the activation of this channel by the DAG/IP3 signaling pathway has been used to charac-
terize an impressive number of G-protein-coupled receptors that have been exhaustively
characterized in the oocyte [111–113]. Similarly, Xenopus laevis oocytes are useful tools for
studying “Store-Operated Ca2+Entry” (SOCE). In the paper of Courjaret [114], different
methodologies to investigate this pathway are reported.
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Figure 2. The cartoon modified from [87] represents a simple scheme of two of the many other states
from the transport cycle: the outward open conformation ready to bind the substrate (left) with
the substrates bound (center) and the inward open conformation with the released substrate. The
pre-steady-state currents are visible when a rapid voltage change is applied. The ions are moved
deeper into the transporter vestibule, or (and) charged residues(s) are rearranged. The charges moved
in the membrane electric field change the amount of charge of the membrane capacitor and can
be revealed as a slow relaxation of the oocyte capacitive current. These currents are isolated from
the endogenous capacitive currents by the subtraction of the current recorded in the presence of an
inhibitor (when available) or by a double exponential fitting [97], considering the fast component
related to the capacitor behavior of the plasma membrane of the oocytes and the slow behavior to the
presence in the membrane of the transporter. The pre-steady-state currents are transient; the area
under the transient at the “on” of the voltage pulse is equal to that of the “off” and shows saturation
at extreme positive and negative voltages [93]. In the absence of a substrate, the charges cannot move
further, so, when the voltage comes back to the starting value, the charges move out, giving rise to
the transient off. The integration of the area of the relaxation allows quantification of the number of
the charges involved. When the substrate is present, it elicits conformational changes, completing
the transport cycle to the inward open conformation (right) moving substrate and cotransporter ions
inside the cell, generating the transport current. The inward open conformation is simply schematized
by the opening of the gate in the presence of the substrates. On the right is an example of transient
currents and transport currents and the data that can be collected from them regarding the Q/V
(charge/voltage) and I/V (current/voltage) relationship.
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3.2. Voltage Clamp Fluorimetry (VCF)

Xenopus laevis oocytes can be utilized to investigate the conformational movements
of single amino acid residues by monitoring the changes in fluorescence emitted by a
fluorophore attached to the residues in the selected positions. With high temporal reso-
lution, this functional investigation provides information on the conformational changes
in a protein when its environment is changed in terms of substrates, voltages, pHs, etc.,
simultaneously allowing observation of its function (Figure 3). The power of functional,
site-directed fluorometry is elegantly reported in [115]. The technique is applied to study
the interactions of the electrogenic protein with modulators. An example of applications of
VCF to membrane transporters is reported by Virkki et al. [116]; this paper details the set-up
used. Oocytes and VCF have been also used to improve optical voltage indicators [117].
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Figure 3. Identified residue is mutated in cysteine that can be bound to a fluorophore. The engineered
cysteine residue with the tethered fluorophore is represented by the green star. Changes in mem-
brane potential, pH, and concentration cause fluorophore displacement, changing the fluorophore
environment and, consequently, fluorescence emission. Membrane current and fluorescence intensity
can be simultaneously measured. A detailed explanation of the methods can be found here: [118,119].

4. Testing the Expression of Membrane Proteins
SOC and Immunochemistry

When mutants are expressed in Xenopus laevis oocytes and show loss or gain of
function, revealed by the previously described technique, it is necessary to verify the pos-
sible alteration of the expression of the transporter at the level of the plasma membrane.
The quantification of the protein can also be useful for investigating the effect of modu-
lation or the co-expression of accessory subunits. The immunostaining of heterologous
protein is a valid tool not only for detecting and quantifying the expression, but also for
following the trafficking of the protein [120,121] or verifying the targeting on the plasma
membrane [122], even if the correct targeting is, in many cases, verified by the function;
when the function is hampered, confirmation of the presence or the absence of the protein
at the plasma membrane becomes of great importance [123]. It is also useful to point out
that the classical Western blot technique is not the first choice for investigating the presence
of the heterologous protein at the plasma membrane, primarily because the high presence
of lipoprotein in many cases masks the signals and because it requires the separation of the
membranes [124] and/or the application of immunoprecipitation techniques [18,125], or
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the biotinylation of the membrane protein [72,106] Western blot from homogenized oocytes
requires specific tricks to even verify the presence of cytosolic proteins [123,126]. To our
knowledge, there are two other effective immunochemistry techniques for investigating
exogenous proteins in Xenopus laevis oocytes which are easier and less time-consuming,
even if they are not applicable for all the proteins expressed.

One of these approaches is Single-Oocyte Chemiluminescence (SOC), which allows
a comparison of the amount of protein expressed on the oocyte membrane in differ-
ent groups of differently treated oocytes or expressing mutants or accessory subunits.
Zerangue et al. [127] are the pioneers of this approach. The SOC technique uses classical
immunostaining on the whole oocyte labeled with a secondary antibody conjugated to
Horseradish Peroxidase (HPR). Many oocytes can be tested at the same time, and the
chemiluminescence can be detected in a 96-well plate using a luminometer. The oocytes are
fixed in paraformaldehyde and incubated in the primary and in the secondary antibody
peroxidase conjugate, allowing signal detection proportional to the amount of protein
present in a single oocyte (see Appendix A for detailed protocol). The chemiluminescence
emitted is quantified with a microplate reader. An advantage of this technique is that the
detection on a multiwell plate and data collection from a single oocyte allows the analysis
of many cells at the same time, providing statistically significant numbers in a shorter
time than other techniques. SOC is a valid approach for comparing the amount of mutant
protein expressed at the plasma membrane and verifying the relationship between the
function and the amount of protein present in the plasma membrane. One example of this
approach was the correlation between the function and the expression of some rbPepT1
mutants demonstrated by Bossi et al. This paper [122] reported the electrophysiological
characterization of FLAG-rbPepT1 mutations in charged residues, with the example of
non-functional mutants that, in one case, were correctly localized in the membrane, but,
in another, the introduced mutations completely impaired the correct localization of the
membrane. In this case, a modified protein with a FLAG sequence in the V extracellular
loop was used [128]. The quantification of the expression by oocytes can also be used to
evaluate the effect of the presence of the accessory protein, as reported for B0AT1 [105].
In our experience, this technique works when the antibody is against a sequence located
in the loops spanning the extracellular side of the protein, possibly in extracellular loops.
Epitopes located in the transmembrane domains or the intracellular loops are not (well)
recognized. Moreover, cytoplasmatic proteins cannot be labeled because of the presence
of the membrane that, even if partially permeabilized, limits the diffusion of the anti-
body inside the cell due to the dimension. The localization of the heterologous protein
can also be performed by the immunostaining of the oocytes’ section. With this tech-
nique, cytoplasmatic proteins or internal epitopes can be well recognized. Oocytes, in this
case, are fixed with 4% paraformaldehyde embedded into a cryo-embedding compound
(Polyfreeze tissue-freezing medium), frozen in liquid nitrogen, and cut into thin (7 µm)
sections with a cryostat. Then, the slices are incubated with the primary and secondary
antibody fluorophore conjugate and visualized by a fluorescence microscope, as detailed
in Appendix A.

5. Alternative Methods to Quantify the Functionality

There are experimental conditions where it is not possible to investigate the function
of the protein expressed by applying classical approaches. In our research experience,
we have developed, modified, or identified specific strategies to overcome the various
obstacles that arise in peculiar investigations. To increase the power of Xenopus laevis
oocytes as a research tool, we report some suggestions to better utilize this system.

5.1. Fluorescence Monitoring

Autofluorescent and opaque oocytes have been used on several occasions to monitor
fluorescent molecules, both as substrates and as indicators [129–131] (Figure 4). The paper
of Illing [130] is a milestone in using fluorescence for monitoring the functionality of
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membrane transporters. It provided validation for the use of PhenGreenSK fluorescence
quenching as a marker of cellular metal ion uptake. In this paper, they determined the
metal-ion selectivity of DMT1 (SLC11a2) in specific conditions using a voltage clamp,
radiotracer, and fluorescence assays, validating the methods. For the characterization
of the dictyostelium discoideum orthologs of DMT1, NRAMP1, and 2, calcein, a more
common (and cheaper) fluorescence indicator, was used both in the cells of the amoeba and
in Xenopus laevis oocytes [64]. In this work, the quenching of calcein was monitored by
confocal microscopy on a single oocyte, but the technique also works with basic LED-based
fluorescence microscopy with equal detection capacity, as reported in [132] and as shown in
the various experiments carried out to validate the method and in the subsequent peculiar
oocytes applications [133,134]. The method proposed by Illing and modified by our group
works well, but it has two disadvantages. First, it requires a lot of time to test the number
of samples to achieve statistical significance, considering that, according to the transporter
efficiency/activity testing, the quenching of one oocyte requires between 5 and 30 min.
The second problem is related to the autofluorescence of the oocytes, which changes from
batch to batch, and, consequently, needs collecting for each experiment, as well as several
reference samples. To solve the first problem, Cinquetti et al. [135] developed a method in
which the quenching of the fluorophore was used to indirectly monitor the translocation
of substrates or ions, using a plate reader to collect a satisfactory number of data at the
same time. The technique reported in [135] can be applied to measure the difference of
the fluorescence in a cytoplasmic extract from the oocytes exposed or not to the substrate
and is able to quench the fluorophore, indirectly measuring the uptake. In the same paper,
autofluorescence was also investigated in this kind of assay.
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Figure 4. A fluorophore that reduces or increases its emission in the presence of the substrate can
be used to monitor the changes inside the oocytes. Calcein reduces its emission intensity when
interacting at physiological pH with divalent cations. Calcein-injected oocytes expressing the divalent
metal transporter DMT1 (slc11a2) are incubated in a solution containing Me2+. It is possible to follow
the fluorescence quenching by monitoring the decay of fluorescence intensity with a fluorescence
microscope. It is also possible to measure the final fluorescence intensity in many oocytes at the same
time, incubating them in solution with or without the Me2+, and measuring the fluorescence intensity
of the supernatant obtained after the homogenization and centrifugation of the oocytes.
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Detailed protocols for the use of fluorescence indicators to monitor the changes in
the content of the cytoplasmic environment, and, consequently, indirectly the oocytes
uptake, can be found in the cited papers, and a good strategy to avoid the problem with
autofluorescence is reported in [136].

5.2. Monitoring the Transport by HPLC, GC-MS

One of the classic methods of screening and profiling compounds for a transporter is
the radiolabeled cellular uptake [52]. This method provides solid evidence of the substrate
or inhibitor characteristics of a compound, but it also produces unwanted radioactive
waste while involving a time-consuming, costly procedure to radiolabel the compounds.
Moreover, in recent years, many institutions have preferred radioactive-free experiments
because working with radiolabeled compounds, when they exist, has high costs, high
risks for the staff and the environment, and requires a specifically controlled and isolated
working area. As an economical, accurate, and time-efficient method, high-performance
liquid chromatography (HPLC) provides a very appealing alternative but is still underused.
Since the 1950s, scientists have been optimizing different protocols for chromatographic
separation using HPLC, but preparing the sample and choosing the right detector for
analyzing the cytoplasmic content of the oocytes remains a challenge. Consequently, only
a small number of papers have reported HPLC as a method for quantifying uptake in
Xenopus laevis oocytes, even if it has been used since the 1990s [137].

The HPLC-based approach for Xenopus laevis oocytes expressing transporter provides
a time- and cost-efficient tool for profiling known and unknown compounds [138]. This
method, when combined with TEVC, can provide a correlation between the substrate and
the charge translocation and allow discriminate between the real substrate and possible
molecules acting as channel openers, as reported in [139]; in this paper, the D-serine was
confirmed to be a substrate of KAAT1 (K+-coupled amino acid transporter 1).

5.3. High-Throughput Systems

Conventional electrophysiological experiments using a manual, two-electrode voltage
clamp provide robust, high-resolution, and direct results for electrogenic protein activities
but a low turnover. Given the sheer number of compounds to be tested and the unclassified
transporters, ion channels, and receptors, it is essential to develop sensitive, automated, and
optimized processes for direct electrophysiological measurements [140]. Several groups
have developed high-throughput systems with automated recording stations for TEVCs.
The Roboocyte™ (developed by MCS GmbH, 72770 Reutlingen-Germany) allows auto-
mated cDNA/cRNA microinjection into Xenopus laevis oocytes and TEVC recording from
oocytes in a 96-well plate. Another system, named OpusXpress™ (developed by Axon
Instruments, USA), can run experiments using eight recording stations. The Parallel Oocyte
Electrophysiology Test stations (POETs™ developed by Abbot Laboratories, Abbot Park,
USA) provide a throughput of ~14 plates/day (96-well) and are extensively used to study
ligand-gated ion channels [141,142]. As technology grows, these companies also upgrade
their high-throughput systems. For example, the Roboocyte™ was upgraded and launched
as Roboocyte2™ with upgraded acquisition software, faster solution exchange, and a
compact design with increased automation.

As a general concept, these automated devices can measure 96 oocytes in one go, using
the standard, commercially available 96-well plates. The perfusion systems are controlled
by a robot head, but scientists can also modify the system as needed. These systems
have been used to study GABA receptors, Na+/K+-ATPase transporter, and various ion
channels [140,142,143]. These automated high-throughput systems have had an impact,
increasing the contribution of electrophysiology (using oocytes) for studying the effects of
substrate compounds and discovering new molecules.
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6. Conclusions

The techniques reported here are only a partial summary of the possible applications
available that use Xenopus laevis oocytes in research. The methodologies examined are
mainly related to research in the field of membrane transporters, which is our research
activity. This work is certainly not exhaustive, but we hope it will be useful to researchers
who want to quickly find suggestions and detailed indications when investigating the
functionality and expression of the different members of the solute carrier families.

Author Contributions: Conceptualization, E.B.; methodology, R.C., C.R., M.B., A.D.I. and T.R.; inves-
tigation, E.B., R.C., C.R., M.B., A.D.I. and T.R.; writing—original draft preparation, E.B., M.B., A.D.I.
and T.R.; writing—review and editing, E.B., C.R. and M.B.; supervision, E.B.; funding acquisition, E.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This project received funding from the European Union’s Horizon 2020 research and
innovation program under Marie Skłodowska-Curie grant agreement no.860954.

Institutional Review Board Statement: The research involving Xenopus laevis oocytes was con-
ducted using an experimental protocol approved locally by the Committee of the “Organismo
Preposto al Benessere degli Animali” of the University of Insubria and by the Italian Ministry of
Health (n.449/2021-PR).

Data Availability Statement: This review do not report no unpublished data.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Protocols and experimental details.

Appendix A.1. Oocytes Collection Procedure

- Anesthetize the frog by immersion in 500 mL of tricaine methane sulfonate, check the
pH, and, in case, adjust with bicarbonate solution (750 mg−1g) to pH 8.

- Sterilize the frog’s abdomen with an antiseptic agent (povidone iodine, 0.8%);
- Uplift the skin in the lower abdominal quadrant and make a 10 mm incision using a

pair of sterilized, small scissors. This exposes the body wall, which is then cut (0.5 cm)
using the same technique.

- Remove the portion of the ovary and collect the oocytes in a tube containing ND96 Ø Ca2+;
- Suture both the incisions in the body wall muscle and the skin using stitches of

absorbable synthetic thread.
- Leave the frog for one/two hours post-surgery in a small tank with 3 liters of FETAX

solution until complete recovery from anesthesia.

Appendix A.2. Oocytes Preparation Procedure

- Using sterilized tweezers, split the ovary into small pieces: groups of 8–10 oocytes in
a Petri dish containing ND96 Ø Ca2+.

- Wash the cluster of oocytes twice in clean ND96 Ø Ca2+ and move the oocytes into a
15 mL tube containing 5 mL of collagenase solution.

- Treat the oocyte groups in the collagenase solution with continuous agitation for about
an hour at 18 ◦C to separate the single oocytes and remove the follicular membrane.

- Wash the oocytes three times with ND96 Ø Ca2+ and three times with NDE solutions.
- Transfer oocytes to a 90 mm Petri dish containing NDE medium solution and incubate

for at least 90 min at 18 ◦C;
- Select the healthy and fully grown oocytes (stage V and VI) under a stereomicroscope

and transfer them to a fresh Petri dish containing NDE medium.

Appendix A.3. Selection Criteria

- Well-composed and spherical;
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- The distinct partition between animal and vegetal poles;
- Homogenous pigmentation in animal and vegetal poles;
- Absence of follicular membrane.

Appendix A.4. Membrane Tissue Extraction Procedure

- Homogenize the frozen tissue sample (about 0.5 g) using a Teflon glass homogenizer in
2 mL of glycine buffer at pH 9 (200 mM glycine/150 mM NaCl/50 mM EGTA/50 mM
EDTA/300 mM sucrose), adding 20 µL of protease inhibitors (Sigma 2714, St. Louis,
MO, USA);

- Centrifuge for 15 min at 9500× g at 4 ◦C (Beckmann centrifuge, C1015 rotor);
- Centrifuge the obtained supernatant for 2 h at 100,000× g a 4 ◦C (Beckmann centrifuge,

SW40 rotor).
- Wash the final pellet with H2O and resuspend it in 5 mM glycine.
- Store the aliquots at −80 ◦C or use them directly.
- Inject the membrane samples (50–100 nL/ 0.2–10 mg protein/mL) into oocytes using a

manual microinjection system (Drummond Scientific Company, Broomall, PA, USA).

Appendix A.5. Expression Vector

To generate cRNA from DNA encoded with the protein of interest, it is subcloned into a
plasmid vector with specific characteristics suitable for expression in Xenopus laevis oocytes.

The essential features of this plasmid are:

- The presence of a promoter site for RNA polymerase (T7 or SP6) upstream of the open
reading frame (ORF). It is better to use a T7 or SP6 promoter since the T3 polymer
has generally been shown to give rise to an unstable transcript (in our experience, T7
always works better).

- A polyA tail is needed to stabilize the construct.
- A multiple cloning site allows subcloning of the transporter cDNA downstream of the

promoter and upstream of the polyA tail.
- It is also important that the untranslated region between the RNA polymerase pro-

moter (T7, T3, or SP6) is as short as possible or has the presence of 5′ and 3′ untrans-
lated regions derived from the Xenopus laevis protein, usually the β-globin, which is
efficiently translated in microinjected oocytes.

- The sequences flanking the initiation codon within the cDNA can be modified by
site-directed mutagenesis so that they conform to the optimal translation initiation
sequence, GCCGCCA/GCCmG. The presence of both a purine at position −3 and a G
at the position at +4 is sufficient to direct optimal translation.

- A unique restriction site downstream of the transporter ORF that allows linearization
of the transporter. Restriction enzymes that generate blunt ends or 5’ overhangs
are preferred.

Some examples of the useful vector are: pGEMHE [144], pGH19 [145], pAMV [146],
pOO2 [147], and pGem-He-Juel [148]

Appendix A.6. RNA Preparation Procedure

- Transform the recombinant plasmids expressing the gene of interest into the JM109
strain of E. Coli by performing a heat-shock procedure and letting the colony grow at
37 ◦C overnight.

- Inoculate a single colony in a liquid selective medium specific for plasmid resistance
and incubate at 37 ◦C overnight under constant agitation.

- Extract the plasmid DNAs using Wizard® Plus SV Miniprep (Promega Italia, Milan, Italy).
- To achieve an efficient in vitro transcription, linearize the recombinant plasmid with a

restriction enzyme which generates blunt ends or 5’ overhangs.
- Purify with Wizard SV Gel and PCR clean-up system (Promega Italia).
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- Compose the in vitro transcription reaction as follow: 18 µL of transcription buffer 5X,
8 µL of DTT 100 mmol/L, 2 µL of RNasin® ribonuclease inhibitors 40 U/µL, 13 µL
rNTPs mix (rATP, rCTP, rUTP 5 mmol/L and rGTP 0.5 mmol/L), 6.5 µL of cap analog
10 mmol/L, 10 µL T7 RNA polymerase 20 U/µL (final volume 90 µL). After 10, 20,
and 40 min from the beginning of the incubation, add 1 µL of rGTP 25 mmoL/L. After
1 h from the start of the transcription, add a mix of 4 µL of transcription buffer 5X,
1 µL of DTT 100 mmol/L, 1 µL of RNasin® ribonuclease inhibitors 40 U/µL, 5 µL of
rNTPs mix, 1 µL of T7 RNA polymerase 20 U/µL, 1 µL of GTP 25 mmoL/L, 4 µL of
nuclease-free water. Wait 2 h. Add 101 µL of nuclease-free and 150 µL of LiCl 8 mol/L
and store at −80 ◦C overnight. The next day, precipitate and wash the transcribed
cRNA with EtOH 70% to obtain the purified cRNA.

- Quantify the cRNA by NanoDrop™ 2000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).

- Store the samples at −80 ◦C.
- Inject 50 nL of the cRNA (for the solute carrier, the concentration is always between

0.25 and 0.5 µg/µ) in each oocyte using a manual microinjection system (Drummond
Scientific Company, Broomall, PA, USA).

Appendix A.7. SOC (Single-Oocyte Chemiluminescence)

- Transfer oocytes (5–10 in each well) into a 24-well plate with 500 µL of ND96;
- Wash using 500 µL ND96 cold in mild agitation (5 min at RT, three times);
- Fix with 500 µL of 4% paraformaldehyde in ND96 and shake the multiwell at 4 ◦C for

15 min;
- Wash using 500 µL ND96 cold in mild agitation (5 min at RT, three times);
- Block with 500 µL blocking solution and shake at 4 ◦C for 1 h.
- Incubate oocytes with 300–600 µL of AB I◦, diluted, according to the kind of AB at

defined concentration, in blocking solution and shake at 4 ◦C for 1 h.
- Wash using 500 µL blocking solution in mild agitation (5 min at 4 ◦C, three times).
- Incubate oocytes with 300–600 µL of AB II◦ conjugated to Horseradish Peroxidase

(HPR) diluted, according to the manufacturing indication, in blocking solution and
shake at 4 ◦C for 1 h.

- Wash using 500 µL blocking solution in mild agitation (5 min at 4 ◦C, three times).
- Wash the oocytes for the last time with ND96 in mild agitation at RT for 10 min.
- In a 96-well costar white flat bottom plate, put 50 µL of SuperSignal (Thermofisher);

Transfer the oocytes to the wells with LUMINOL and incubate for 1 h before reading
the luminescence in the plate reader.

Appendix A.8. Immunohistochemistry

- Transfer oocytes (5–10 in each well) into a 24-well plate with 500 µL of ND96.
- Wash using 500 µL ND96 cold in mild agitation (5 min at RT, three times);
- Fix with 500 µL of 4% paraformaldehyde in ND96 and shake the multiwell at 4 ◦C for

15 min.
- Wash using 500 µL ND96 cold in mild agitation (5 min at RT, three times).
- Include the oocyte in Polyfreeze tissue-freezing medium and then freeze in liquid nitrogen.
- Use a cryostat to obtain oocyte cryosections (7 µm thickness) and store at −20 ◦C

until immunostaining.

Appendix A.9. Solutions

- Anesthetic solution: Dissolve 500 mg tricaine (ethyl 3 aminobenzoate methane sul-
fonate) in 500 mL MilliQ water. Add sodium bicarbonate (750 mg−1 g) to the anesthetic
solution until pH > 8;

- FETAX: NaCl 10.69, NaHCO3 1.14, KCl 0.4, CaCl2 0.1, CaSO4 0.35, MgSO4 0.62
(in mM);
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- Collagenase solution: dissolve collagenase from Clostridium histolyticum (collagenase
type IA from Clostridium histolyticum, C0130 from Sigma-Aldrich) in ND96 Ø Ca2+.
Use a concentration of 1–2 mg/mL according to the FALGPA value stated in the
production batch specifications.

- ND96Ø: NaCl 96, KCl 2, MgCl2 1, and HEPES 5 (in mM), to pH 7.6 with NaOH.
- ND96: NaCl 96, KCl 2, CaCl2 1.8, MgCl2 1, and HEPES 5 (in mM) to pH 7.6 with NaOH.
- NDE: ND96 with pyruvate 2.5 mM, and 50 µg/mL gentamycin sulphate.
- Blocking solution: 50 mL ND96 + 0.5 g BSA.
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