289 research outputs found

    Phase separation in hydrogen-helium mixtures at Mbar pressures

    Full text link
    The properties of hydrogen-helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures around 5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter.Comment: 6 pages, 7 figures. Published in "Proceedings of the National Academy of Sciences USA

    Velocity autocorrelations across the molecular-atomic fluid transformation in hydrogen under pressure

    Full text link
    Non-monotonous changes in velocity autocorrelations across the transformation from molecular to atomic fluid in hydrogen under pressure are studied by ab initio molecular dynamics simulations at the temperature 2500 K. We report diffusion coefficients in a wide range of densities from purely molecular fluid up to metallic atomic fluid phase. An analysis of contributions to the velocity autocorrelation functions from the motion of molecular centers-of-mass, rotational and intramolecular vibrational modes is performed, and a crossover in the vibrational density of intramolecular modes across the transition is discussed.Comment: 7 pages, 5 figure

    Наноалмазы как идеальные наноносители для циансодежащих цитостатиков

    Get PDF
    Цианосодержащие цитостатики - новый класс открытых нами лекарств, которые благодаря цианогруппам хорошо закрепляются на наноалмазах, с увеличением активности

    Factor structure and psychometric properties of the Italian version of the Homosexuality scale of the Trueblood Sexual Attitudes Questionnaire

    Get PDF
    The aim of the present study was to translate the Homosexuality scale of the Trueblood Sexual Attitudes Questionnaire into the Italian language and to assess its factor structure and psychometric properties in Italian psychology students. The questionnaire was originally developed and validated in U.S. college students, and later in Turkish social work students, showing high internal consistency. It measures attitudes toward several sexual practices and behaviors, regarding self and others. Particularly, the Homosexuality scale measures attitudes toward different sexual and romantic practices with people of the same sex. A total of 199 Italian psychology students participated to the study, and they were administered the Italian translation of the scale. We applied exploratory factor analysis and confirmatory factor analysis. Results showed that the scale has high internal consistency, and that the original two-factor model accounting for attitudes toward self and others fits the data well. Implications for education and assessment in student populations are discussed

    Transition metal oxides using quantum Monte Carlo

    Full text link
    The transition metal-oxygen bond appears prominently throughout chemistry and solid-state physics. Many materials, from biomolecules to ferroelectrics to the components of supernova remnants contain this bond in some form. Many of these materials' properties strongly depend on fine details of the TM-O bond and intricate correlation effects, which make accurate calculations of their properties very challenging. We present quantum Monte Carlo, an explicitly correlated class of methods, to improve the accuracy of electronic structure calculations over more traditional methods like density functional theory. We find that unlike s-p type bonding, the amount of hybridization of the d-p bond in TM-O materials is strongly dependant on electronic correlation.Comment: 20 pages, 4 figures, to appear as a topical review in J. Physics: Condensed Matte
    corecore