5,087 research outputs found

    A note on the moving hyperplane method

    Full text link
    We give more precision on the regularity of the domain that is needed to have the monotonicity and symmetry results recently proved by Damascelli and Pacella, result concerning p-Laplace equations. For this purpose, we study the continuity and semicontinuity of some parameters linked with the moving hyperplane method.Comment: 4 pages, 2 figure

    Jacobi fields along harmonic 2-spheres in S3S^3 and S4S^4 are not all integrable

    Full text link
    In a previous paper, we showed that any Jacobi field along a harmonic map from the 2-sphere to the complex projective plane is integrable (i.e., is tangent to a smooth variation through harmonic maps). In this paper, in contrast, we show that there are (non-full) harmonic maps from the 2-sphere to the 3-sphere and 4-sphere which have non-integrable Jacobi fields. This is particularly surprising in the case of the 3-sphere where the space of harmonic maps of any degree is a smooth manifold, each map having image in a totally geodesic 2-sphere.Comment: 43 pages. Some typos corrected; introduction expande

    Magnetic and structural properties of nanocrystalline PrCo3_3

    Full text link
    The structure and magnetic properties of nanocrystalline PrCo3_3 obtained from high energy milling technique are investigated by X-ray diffraction, Curie temperature determination and magnetic properties measurements are reported. The as-milled samples have been annealed in a temperature range of 1023 K to 1273 K for 30 mn to optimize the extrinsic properties. The Curie temperature is 349\,K and coercive fields of 55\,kOe at 10\,K and 12\,kOe at 293\,K are obtained on the samples annealed at 1023\,K. A simulation of the magnetic properties in the framework of micromagnetism has been performed in order to investigate the influence of the nanoscale structure. A composite model with hard crystallites embedded in an amorphous matrix, corresponding to the as-milled material, leads to satisfying agreement with the experimental magnetization curve. [ K. Younsi, V. Russier and L. Bessais, J. Appl. Phys. {\bf 107}, 083916 (2010)]. The microscopic scale will also be considered from DFT based calculations of the electronic structure of RRCox_x compounds, where RR = (Y, Pr) and xx = 2,3 and 5.Comment: To be published in J. Phys.: Conference Series in the JEMS 2010 special issue. To be found once published at http://iopscience.iop.org/1742-659

    Le statut constitutionnel de la Nouvelle-Calédonie

    Get PDF

    Insights in the evolutionnary history of Venturia effectors

    Get PDF

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    Radial Distributions of Coronal Electron Temperatures: specificities of the DYN model

    Full text link
    This paper is a follow up of the article where Lemaire and Stegen (2016) introduced their DYN method to calculate coronal temperature profiles from given radial distributions of the coronal and solar wind (SW) electron densities. Several such temperature profiles are calculated and presented corresponding to a set of given empirical density models derived from eclipse observations and in-situ measurements of the electron density and bulk velocity at 1 AU. The DYN temperature profiles obtained for the equatorial and polar regions of the corona challenge the results deduced since 1958 from singular hydrodynamical models of the SW. In these models - where the expansion velocity transits through a singular saddle point - the maximum coronal temperature is predicted to be located at the base of the corona, while in all DYN models the altitude of the maximum temperature is found at significantly higher altitudes in the mid-corona. Furthermore, the maximum of the DYN-estimated temperatures is found at much higher altitudes over the polar regions and coronal holes, than over the equator. However, at low altitudes, in the inner corona, the DYN temperatures are always smaller at high latitudes, than at low equatorial latitudes. This appears well in agreement with existing coronal hole observations. These findings have serious implications on the open questions: what is the actual source of the coronal heating, and where is the maximum energy deposited within the solar corona?Comment: 13 pages, 3 figures. Submitted to the Solar Physics journa
    corecore