163 research outputs found

    Fast Spectrum Molten Salt Reactor Options

    Get PDF
    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option

    Human Endogenous Retrovirus and Neuroinflammation in Chronic Inflammatory Demyelinating Polyradiculoneuropathy.

    Get PDF
    Human endogenous retroviruses HERV-W encode a pro-inflammatory protein, named MSRV-Env from its original identification in Multiple Sclerosis. Though not detected in various neurological controls, MSRV-Env was found in patients with chronic inflammatory demyelinating polyradiculoneuropathies (CIDPs). This study investigated the expression of MSRV in CIDP and evaluated relevant MSRV-Env pathogenic effects. 50 CIDP patients, 19 other neurological controls (ONDs) and 65 healthy blood donors (HBDs) were recruited from two different countries. MSRV-env and -pol transcripts, IL6 and CXCL10 levels were quantified from blood samples. MSRV-Env immunohistology was performed in distal sensory nerves from CIDP and neurological controls biopsies. MSRV-Env pathogenic effects and mode of action were assayed in cultured primary human Schwann cells (HSCs). In both cohorts, MSRV-env and -pol transcripts, IL6 positivity prevalence and CXCL10 levels were significantly elevated in CIDP patients when compared to HBDs and ONDs (statistically significant in all comparisons). MSRV-Env protein was detected in Schwann cells in 5/7 CIDP biopsies. HSC exposed to or transfected with MSRV-env presented a strong increase of IL6 and CXCL10 transcripts and protein secretion. These pathogenic effects on HSC were inhibited by GNbAC1, a highly specific and neutralizing humanized monoclonal antibody targeting MSRV-Env. The present study showed that MSRV-Env may trigger the release of critical immune mediators proposed as instrumental factors involved in the pathophysiology of CIDP. Significant MSRV-Env expression was detected in a significant proportion of patients with CIDP, in which it may play a role according to its presently observed effects on Schwann cells along with previously known effects on immune cells. Experimental results also suggest that a biomarker-driven therapeutic strategy targeting this protein with a neutralizing antibody such as GNbAC1 may offer new perspectives for treating CIDP patients with positive detection of MSRV-Env expression. Geneuro-Innovation, France

    Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Get PDF
    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior

    Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    Get PDF
    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC)

    Roles of Coactivators in Hypoxic Induction of the Erythropoietin Gene

    Get PDF
    Hypoxia-inducible expression of the erythropoietin (EPO) gene is mediated principally by hypoxia-inducible factor 2alpha (HIF-2alpha) in Hep3B cells under physiologic conditions. How/whether p300/CBP and the members of p160 coactivator family potentiate hypoxic induction of endogenous EPO and other HIF-2alpha and hypoxia-inducible factor 1alpha (HIF-1alpha) target genes remains unclear.We demonstrate, using chromatin immunoprecipitation (ChIP) analysis, that the histone acetyl transferase (HAT) coactivators p300, SRC-1 and SRC-3 are recruited to the 3' enhancer of the EPO gene upon hypoxic stimulation, and that each associates with the enhancer in a periodic fashion. Hypoxia induced acetylation of the EPO gene 5' promoter at histone 4 and lysine 23 of histone 3. Knocking down SRC-3, but not SRC-1 or SRC-2, using short interfering RNAs (siRNAs), reduced EPO transcriptional activity. Knocking down p300 resulted in dramatic down-regulation of hypoxic stimulation of EPO gene transcription, negated recruitment of RNA polymerase II to the gene's promoter, and eliminated hypoxia-stimulated acetylation at the promoter and recruitments of SRC-1 and SRC-3 to the enhancer. The inhibitory effects of knocking down p300 and the chromatin remodeling coactivator, Brm/Brg-1, on EPO transcription were additive, suggesting that p300 and Brm/Brg-1 act independently. p300 was also required for hypoxia induced transcription of the HIF-1alpha target gene, VEGF, but was dispensable for induction of two other HIF-1alpha target genes, PGK and LDHA. Knocking down CBP, a homolog of p300, augmented hypoxic induction of VEGF, LDHA and PGK. Different HIF target genes also exhibited different requirements for members of the p160 coactivator family.p300 plays a central coactivator role in hypoxic induction of EPO. The coactivators exhibit different specificities for different HIF target genes and each can behave differently in transcriptional regulation of different target genes mediated by the same transcription factor
    corecore