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Background: Human endogenous retroviruses HERV-W encode a pro-inflammatory protein, named MSRV-
Env from its original identification in Multiple Sclerosis. Though not detected in various neurological con-
trols, MSRV-Env was found in patients with chronic inflammatory demyelinating polyradiculoneuropathies
(CIDPs). This study investigated the expression of MSRV in CIDP and evaluated relevant MSRV-Env
pathogenic effects.
Methods: 50 CIDP patients, 19 other neurological controls (ONDs) and 65 healthy blood donors (HBDs) were
recruited from two different countries. MSRV-env and -pol transcripts, IL6 and CXCL10 levels were quanti-
fied from blood samples. MSRV-Env immunohistology was performed in distal sensory nerves from CIDP
and neurological controls biopsies. MSRV-Env pathogenic effects and mode of action were assayed in cul-
tured primary human Schwann cells (HSCs).
Findings: In both cohorts, MSRV-env and -pol transcripts, IL6 positivity prevalence and CXCL10 levels were
significantly elevated in CIDP patients when compared to HBDs and ONDs (statistically significant in all
comparisons). MSRV-Env protein was detected in Schwann cells in 5/7 CIDP biopsies. HSC exposed to or
transfected with MSRV-env presented a strong increase of IL6 and CXCL10 transcripts and protein secretion.
These pathogenic effects on HSC were inhibited by GNbAC1, a highly specific and neutralizing humanized
monoclonal antibody targeting MSRV-Env.
Interpretation: The present study showed that MSRV-Env may trigger the release of critical immune medi-
ators proposed as instrumental factors involved in the pathophysiology of CIDP. Significant MSRV-Env
expressionwas detected in a significant proportion of patients with CIDP, in which it may play a role accord-
ing to its presently observed effects on Schwann cells along with previously known effects on immune cells.
Experimental results also suggest that a biomarker-driven therapeutic strategy targeting this protein with a
neutralizing antibody such as GNbAC1 may offer new perspectives for treating CIDP patients with positive
detection of MSRV-Env expression.
Funding: Geneuro-Innovation, France.
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1. Introduction

Human endogenous retroviruses (HERVs) originate from ances-
tral integrations of exogenous retroviruses during evolution and
represent 8% of the human genome, in which most copies are
inactivated or silenced (Belshaw et al., 2005). However, a retroviral
element expressing proteins was isolated in Multiple Sclerosis
(MSRV, for Multiple Sclerosis associated RetroViral element) and
unveiled a family of homologous endogenous copies (HERV-W)
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(Blond et al., 1999; Perron et al., 1997, 1991). The HERV-W family com-
prises multiple copies inserted in the human genome. One of them has
been domesticated throughout evolution and encodes an HERV-W
envelope, named Syncytin (Mi et al., 2000) for its original fusogenic
properties involved in the physiological development of the syncitio-
trophoblast tissue in the placenta (Frendo et al., 2003). It is selectively
expressed during placentation, is transcribed from a locus (ERVWE1)
within a defective HERV-W copy on chromosome 7 and has a unique
molecular signature among HERV-W envelope sequences (Bonnaud
et al., 2004; Mallet et al., 2004). This protein and its coding nucleotide
sequences can thus be differentiated from the envelope sequences
obtained from genomic RNA in purified retroviral particles from MS
(Mameli et al., 2009). The latter define an MSRV-subtype of HERV-W
elements that comprises multiple related defective fixed copies in the
human genome such as, e.g., a partial HERV-W copy on chromosome
X that potentially encodes a truncated envelope (ERVWE2 locus) and
may interfere with MSRV expression (Roebke et al., 2010; do Olival
et al., 2013; Garcia-Montojo et al., 2014). HERVs are not infectious
viruses but human DNA sequences related to retrotransposable genetic
elements, few of which have the potential to be activated by various
environmental triggers, including infectious viruses on a “hit-and-run”
mode (Perron and Lang, 2010; Mameli et al., 2012). HERV-W proteins
are tolerated by human adaptive immune system and neither antibody
nor T-cell response to HERV-W proteins can be seen, unless in rare
and extreme conditions that may relate to autoimmunity (Ruprecht
et al., 2008).

Beyond this fundamental research context, independent studies
confirmed an association of MSRV expression with MS (Perron et al.,
2012; Sotgiu et al., 2010). Its envelope protein (MSRV-Env) was
shown to elicit pro-inflammatory and autoimmune responses in
immune cells (Perron et al., 2001, 2013; Rolland et al., 2006) and to
impair remyelination by oligodendrocyte precursor cells (OPCs)
(Kremer et al., 2013), suggesting its involvement in MS pathogenesis
(Perron et al., 2012; Kremer et al., 2014; Madeira et al., 2016).

Chronic inflammatory demyelinating polyradiculoneuropathy
(CIDP) is a rare immune disease of the peripheral nervous system
(PNS), with multifocal inflammatory and demyelinating lesions in
nerve roots also expanding to distal regions (Vallat et al., 2010). Its
clinical presentation is heterogeneous and its diagnosis is challenging
without known etiology or specific biomarkers (Dalakas, 2011; Anon.,
2008, 2010; Koller et al., 2005). CIDP therapies are intravenous human
immunoglobulins (IVIG), corticosteroids or plasma exchange. Long-
term therapy is often limited by side effects and one-third of patients
are refractory to existing treatments (Latov, 2014), which illustrates
the unmet need for diagnostic biomarkers and innovative treatments
of CIDP.

In a previous study on MS, MSRV-Env was not detected in healthy
controls and in various other Neurological Diseases except for CIDP
cases (5/8) (Perron et al., 2012). This observation prompted the present
study to investigate a potential association of this endogenous HERV-W
element with CIDP. Its results have confirmed significant MSRV expres-
sion in CIDP, have demonstrated the pathogenic effects of MSRV-Env on
human Schwann cells (HSC) and their inhibition by GNbAC1, a neutral-
izing and highly specific humanized antibody targeting this MSRV-Env
endogenous protein.

2. Patients and Methods

2.1. Origin of Samples

The overall study group consisted of 51 CIDP patients, from the
Neurology Departments of Henri Mondor University Hospital (Creteil,
France) and of Vaudois University Hospital (CHUV-Lausanne,
Switzerland). CIDP patients fulfilled criteria of the EFNS and PNS
Joint Task Force guidelines (PNS JTFOTEat, 2010). The majority of
patients had symmetric sensorimotor deficits (24 patients), 9 patients
had asymmetric sensorimotor deficits, MADSAM type, and one patient
had pure sensory deficit. The number of patients in each category is
too small to consider statistical interpretation on these symptomatolog-
ic subgroups. 19 patients with other Neurological diseases (OND) were
recruited in Creteil Neurology department: type 2 diabetes associated
neuropathies (n=8), Parkinson disease (n=3), diffusemyalgiaswith-
out a known cause (n = 2), stroke, meningoradiculitis, macrophagic
myofasciitis, axonal idiopathic neuropathy, Guillain–Barré syndrome,
and spastic paraparesis (n = 1 each). 65 healthy blood donors (HBDS)
from CHUV Lausanne or from Etablissement Français du Sang,
Annemasse, France, provided samples. Written informed consent to
use their blood for research analyses after anonymization was obtained
from all individuals. The study protocol was approved by local research
ethics committees (Créteil: ethics committees CPPIDF VI and CPPIDF IX,
POLYCHROME study number ID RCB 2010-A01226–33; Lausanne:
protocol 235/10).

In a first cohort (Study 1), 20 CIDP patients from Creteil and 21HBDs
from Annemasse, were enrolled. A second cohort (Study 2) included 11
additional CIDP patients and 19 OND patients from Créteil, 20 CIDP
patients and 18 HBDs from Lausanne, and 26 HBDs from Annemasse,
for a total of 31 CIDPs, 19 ONDs and 44HBDs in study 2.MSRV transcript
levels in PBMC were assessed separately in Studies 1 and 2. In the light
of results obtained in human Schwann cells,

IL6 and CXCL10 serum levels were determined retrospectively,
at the same time for both cohorts (aliquoted samples from studies
1 and 2).

For serum, 6 mL of blood was collected on a dry tube and 500 μL
of serum aliquots were frozen at −80 °C. For peripheral blood
mononuclear cells (PBMCs), 4 mL of blood was collected in a Cell
Preparation Tube (ref. 362781, Becton Dickinson, Paris, France) and
treated according to the manufacturer's instructions. PBMCs in
heat-inactivated Fetal Calf Serum with 10% dimethyl-sulfoxide
were stored at −80 °C.

2.2. Quantification of MSRV-env and -pol Transcripts in PBMC by Real-time
RT-PCR (qRT-PCR)

Thawed PBMCs were washed with PBS (1700 g for 20 min at
10 °C). Total RNA was isolated with QIAamp RNeasy Mini Kit
(Qiagen, Courtaboeuf, France) and treated with Turbo DNA-Free™
(Life Technologies, Saint-Aubin, France) according to the manufacturer's
instructions. RNA concentration was assessed with a Nanodrop 2000
(Fisher Scientific, Illkirch, France) before adjustment to 10 ng/μL with
RNase-free water. First-strand cDNA was synthesized with i-script
select cDNA-synthesis kit using oligonucleotide dT (18) (BioRad,
Marnes-La-Coquette, France) at 42 °C for 60 min, inactivated
at 85 °C for 5 min and adjusted to 10 ng μL−1 with RNase-free
water. 50 ng of cDNA was used with iQ supermix (BioRad, Marnes-
La-Coquette, France) and corresponding sets of primers/probes for
qRT-PCR. The internal control was glucuronidase beta gene, GUS B
(Taqman gene expression assay GUS B, Life Technologies, Saint-Aubin,
France) and specific sets of primers and probes for MSRV-env as
described (Mameli et al., 2009). MSRV-pol transcripts were quantified
with a FAM™ fluorescent reporter (forward primer: 5′-CCTGTACGTC
CTGACTCTC-3′; reverse primer: 5′-CTTGGGCTAATGCCTGGCC-3′;
probe: FAM-CCAACGTCTCAACTCACCTGG-TAMRA). PCR was per-
formed with a C1000 thermal cycler and a CFX96 real-time system
(BioRad, Marnes-La-Coquette, France), with an initial denaturation
step (95 °C, 10 min) followed by 45 cycles of successive denaturation
(95 °C for 10 s) and annealing/extension (60 °C, 1 min) steps. For each
sample, the expression of MSRV transcripts and GUS B was calculated
as the cycling threshold (Ct), assessed in triplicates, and MSRV tran-
script level was expressed as relative expression to GUS B, according
to the ΔCt method with reference gene (Real-Time Application
Guide, BioRad, Marnes-La-Coquette, France). For each sample, a con-
trol without reverse transcriptase (No RT) was performed to detect
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eventual DNA contamination. Results validation required: negative
No RT control, PCR efficiency between 90 and 110% with slope
between 3.1 and 3.6, and triplicate variation below 5%. In each
study, a threshold above which an elevated transcriptional activity
of MSRV transcripts (High Expression, HE) becomes significant
was determined: mean plus two standard deviations of simulta-
neously tested HBD group. HBD outliers with values beyond
HBD mean plus standard deviation, were excluded for normal
threshold calculation.

2.3. IL6 and CXCL10 in Serum and HSC Cultures

IL6 and CXCL10 protein levels were respectively quantified with
Human IL6 ELISA Ready-SET-Go!® and BD OptEIA™ Human IP-10
ELISA Set according to the manufacturer's instructions (eBioscience,
Vienna, Austria). The absorbance was read at 450 nm with Biotek
EL800 device (Biotek, Luzern, Switzerland).

2.4. MSRV-Env Immunohistochemistry in Peripheral Nerve Biopsies

Frozen superficial peroneal nerve biopsies from 7 patients with
CIDP and 2 ONDs, one axonal inflammatory neuropathy with
perivascular inflammatory changes and one diabetic neuropathy,
were collected from the Biological Resource Platform of Henri
Mondor University Hospital (to French Ministry of Research
#DC-2009-930). Biopsy samples were obtained independently
from prospective studies 1 and 2, and used for research purposes
according to French regulation (#AC-2014-2056). 15% PFA fixed
and paraffin embedded 3 μm-sections were prepared. After paraffin
removal, they were washed with Tween-TBS solution. Endogenous
peroxidase activity and avidin/biotin proteins were quenched by
Biotin blocking system (Dako, Les Ulis, France) according to the
manufacturer's instructions. Sections were then washed in Tween-
TBS solution, incubated with anti-MSRV-Env mouse monoclonal
antibody GN-mAb_04 (Geneuro, Geneva, Switzerland) or an isotype
control (Mouse IgG1 kappa, Abcam, Paris, France) diluted at 5 μg/mL
in PBS with 10% normal human serum (NHS) for 1 h at room temper-
ature. After washing with Tween-TBS, sections were incubated
with a secondary biotinylated antibody (biotin-coupled polyclonal
rabbit anti-mouse IgG, Dako, Les Ulis, France) diluted at 10 μg/mL
in PBS with 10% NHS for 30 min at room temperature. Sections were
washed again in Tween-TBS, streptavidin complex was added for
20 min at room temperature, followed by DAB for 7 min (LSAB + HRP
system, Dako, Les Ulis, France). Then, after washing with water and
counterstaining with Hemalun, MSRV-Env specific and isotype control
staining were examined by light microscopy on two successive sections
of each biopsy.

2.5. Human Schwann Cells (HSC) Primary Culture, Transfection and Stimu-
lation with MSRV-ENV

HSCs were purchased from ScienCell Research Laboratories
(Carlsbad, CA, USA) and cultivated according to the manufacturer's
instructions.

2.5.1. Immunocytochemistry
HSCs were grown for 48 h on poly-L-lysine coated (18 h, 37 °C)

labtek (Thermo Fisher Scientific, Waltham, MA, USA), fixed in PBS
with 4% paraformaldehyde, washed 3 times with PBS and incubated
in PBS with 0.01% Triton X-100 for Schwann cell markers (S100β,
p75/NGF receptor, P0 myelin protein), or in PBS alone for extracellu-
lar TLR4. Nonspecific binding sites were saturated by incubation in
PBS with 10% Fetal Bovine Serum for 1 h at 37 °C. They were then in-
cubated with primary antibodies diluted in Fetal Bovine Serum 10%
in PBS overnight at 4 °C (rabbit anti-S100, rabbit anti-P0, rabbit anti-
P75/NGF at 1/100; Abcam, Paris, France; mouse anti-TLR4 at 1/50;
eBioscience, Paris, France). After 3 PBS washes, HSCs were incubated
with secondary antibody solutions for 1 h at 37 °C (FITC-coupled goat
anti-rabbit IgG diluted 1/400 or FITC-coupled goat anti-mouse IgG
diluted 1/200; Millipore, Fontenay-sous-Bois, France). Following 3
PBS washes, plastic chambers were separated from the slides
and mounted with Vectashield® mounting medium containing
DAPI (Vector Laboratories, Les Ulis, France) before examination by
fluorescence microscopy.

2.5.2. Transfections
HSCs were cultured for 24 h in 6-well plates. At 60% confluency,

HSC medium was replaced by serum-free OPTIMEM medium (Life
Technologies, Saint-Aubin, France). Lipofectamine 2000 was used
according to the manufacturer's instructions (Life Technologies,
Saint-Aubin, France) to transfect HSCwith empty pHBB control plasmid
or pHHB plasmids expressing either the full length envelope protein
(MSRV-Env-T) or its extracellular domain only (MSRV-Env-SU). After
4 h, transfection medium was replaced by HSC medium and cells
were cultured for 48 h with GNbAC1 or GNbAC1 vehicle before
collecting culture supernatant and cells for analyses.

2.5.3. HSC Cultures with MSRV-Env
HSCs were grown on 6-wels plates and incubated with

endotoxin-free recombinant MSRV-Env or its solubilization buffer
(negative control), together with LPS-RS (InVivogen, France),
GNbAC1 or GNbAC1 vehicle, at 37 °C for 1 h (IL6) or 4 h (CXCL10) before
RNA isolation from cells. Recombinant MSRV-Env was produced in
Escherichia coli and purified as endotoxin-free protein by PX'Therapeutics
(Grenoble, France) from plasmid pV14 encompassing the complete
env orf cloned from MSRV virion RNA (58 kDa, 542 amino acids,
GenBank no. AF331500.1). MSRV Env solubilization buffer (NaCl
150 mM, SDS 1.5%, DTT 10 mM in Trizma–HCL 20 mM, pH 7.5) was
provided in parallel.

2.5.4. IL6 and CXCL10 qRT-PCR
After appropriate treatments, HSCs were washed with PBS and total

RNA extracted with QIAamp RNeasy Mini Kit. Relative expression of IL6
and CXCL10 to GUS B was performed with Taqman gene expression
assays for IL6, CXCL10, and GUS B (Life Technologies, Saint-Aubin,
France) according to the manufacturer's instructions.

2.5.5. MSRV-Env ELISA in HSC Cultures
96-well microplates were coated overnight at 4 °C with an anti-

MSRV-Env capture antibody (mouse monoclonal GN-mAb_16) diluted
at 5 μg/mL in 50 mM bicarbonate buffer, with a 0.05% Tween in PBS,
saturated with 1% BSA PBS and washed 4 times. Culture supernatants
diluted 1/2 in PBS were then incubated for 2 h at 37 °C, plates washed
4 times and incubated with HRP-coupled anti-MSRV-Env detection a-
ntibody (mouse monoclonal GN-mAb_01) for 1 h at 37 °C. After
6 washes, revelation of antigen-bound HRP-antibody used 3,3′,5,5′-
tétraméthylbenzidine (30 min reaction, stopped with 2N H2SO4) and
absorbance at 450 nm wavelength was measured with Biotek EL800
device (Biotek, Luzern, Switzerland).

2.6. Statistical Analysis

Kolmogorov–Smirnov normality test was applied to all data
sets. Pearson product moment correlation test, Student's t-test,
and one-way analysis of variance followed by Bonferroni's post
hoc test were used when data passed the normality test, otherwise
Spearman rank order correlation test, Mann–Whitney rank sum
test, and Kruskal–Wallis one-way analysis of variance on ranks
followed by Dunn's post hoc test were used. Chi-square or Fisher
Exact tests were used to compare rates and proportions. Statistical
analyses were performed with SigmaStat 3.5 (Systat inc., San Jose,



Table 1
Demographic characteristics by study and type of biological analyses.

Group P value

HBD CIDP OND HBD/CIDP HBD/OND CIDP/OND

Study 1 Gender PCR MSRV env n male/n female 10/10 11/4 – 0.296 – –
Age PCR MSRV env median (range)a 43,5 (37–51) 59 (28–89) – 0.040 – –
Gender PCR MSRV-pol n male/n female 8/9 11/4 – 0.250 – –
Age PCR MSRV-pol median (range)a 44 (37–51) 59 (28–89) – 0.056 – –

Study 2 Gender PCR MSRV env n male/n female 14/14 10/7 9/3 0.789 0.264 0.449
Age PCR MSRV env median (range)a 42 (22–63) 57 (36–79) 53 (43–82) b0.001 b0.001 1.000
Gender PCR MSRV-pol n male/n female 12/14 8/6 5/1 0.740 0.178 0.354
Age PCR MSRV-pol median (range)a 42 (22–63) 57.5 (36–79) 65 (49–82) b0.001 b0.001 0.794

Studies 1 + 2 Gender IL-6 serum n male/n female 28/34 35/12 16/3 0.004 0.006 0.524
Age IL-6 serum median (range)a 42.5 (22–69) 60 (28–89) 53 (43–82) b0.001 b0.001 1.000
Gender CXCL10 serum n male/n female 31/34 35/14 16/3 0.019 0.008 0.359
Age CXCL10 serum median (range)a 43 (22–69) 60 (28–89) 53 (43–82) b0.001 b0.001 1.000
Treatment (% of CIDP patients)
azathioprine 8%
cyclosporine 8%
IVIGb 49%
methylprednisolone 2%
none 27%
plasmapheresis 2%
prednisone 2%
prednisone + tacrolimus 2%

In bold: statistically significant differences
a Years.
b Intravenous human immunoglobulins.
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CA, USA) and data plotted with Prism 5.04 (GraphPad Software,
La Jolla, CA).
2.6.1. Funding Sources
The sample collection and the experimental study were financially

supported by Geneuro-Innovation, France. The funders had no role in
the study design, nor the data collection and analysis, nor in their
interpretation or in the writing of the manuscript.
Fig. 1.MSRV-Env andMSRV-Pol transcripts levels are increased in peripheral bloodmononuclea
MSRV-Pol (Study 1: B; Study 2: E) RNA levels were quantified by qRT-PCR in PBMC from heal
(ONDs). MSRV-Env and MSRV-Pol expressions are strongly correlated in HBDS (black dots), O
expressed as relative expression of the targeted transcript to GUS B reference transcript, and p
3. Results

3.1. Demographical and Clinical Characteristics

Demographical and clinical characteristics are presented in Table 1.
The male/female ratio in CIDP, OND and HBD groups was not signifi-
cantly different in Studies 1 or 2. CIDP and OND groups had significantly
moremales thanHBDs in the overall study. CIDP andONDpatientswere
significantly older than HBDs, but CIDP and OND cohorts were matched
r cells of CIDP patients in two independent studies.MSRV-Env (Study 1: A; Study 2: D) and
thy blood donors (HBDS), CIDP patients (CIDP), and other neurological diseases controls
ND (green dots) and CIDP (red dots) in Studies 1 and 2 (respectively C and F). Data are
lots represent individual values. *P b 0.05, ***P b 0.001 versus HBDS.

Image of Fig. 1


Table 2
MSRV transcripts, IL6 and CXCL10 expressions in CIDP peripheral blood mononuclear cells and serum compared to OND and normal populations.

Group P value Correlation

HBDS CIDP OND HBDS/CIDP HBDS/OND CIDP/OND r; p value

Study 1 MSRV env RNA mean ± SEM (n)1 0.19 ± 0.03 (20) 0.37 ± 0.03 (15) – b0.001 – – } 0.713; b0.001
MSRV-pol RNA mean ± SEM (n)1 0.09 ± 0.02 (17) 0.17 ± 0.03 (15) – 0.011 – –
MSRV env HE subjects ratio (%)2 0/20 (0%) 6/15 (40%) – 0.003 – –
MSRV-pol HE subjects ratio (%)2 1/17 (6%) 4/15 (27%) – 0.161 – –
MSRV-env and pol HE subjects ratio (%)2 0/17 (0%) 3/15 (20%) – 0.092 – –
MSRV-env or -pol HE subjects ratio (%)2 1/17 (6%) 7/15 (47%) – 0.013 – –

Study 2 MSRV env RNA mean ± SEM (n)1 0.064 ± 0.004 (28) 0.104 ± 0.009 (17) 0.085 ± 0.009 (12) b0.001 0.114 0.538 } 0.782; b0.001
MSRV-pol RNA mean ± SEM (n)1 0.007 ± 0.001 (26) 0.021 ± 0.003 (14) 0.007 ± 0.002 (6) b0.001 1.000 0.067
MSRV env HE subjects ratio (%)2 2/28 (7%) 9/17 (53%) 3/12 (25%) b0.001 0.149 0.251
MSRV-pol HE subjects ratio (%)2 3/26 (12%) 8/14 (57%) 0/6 (0%) 0.007 1.000 0.042
MSRV-env and -pol HE subjects ratio (%)2 2/26 (8%) 6/14 (43%) 0/6 (0%) 0.014 1.000 0.115
MSRV-env or -pol HE subjects ratio (%)2 3/26 (12%) 9/14 (64%) 1/6 (17%) b0.001 1.000 0.050
MSRV env RNA/CIDP disease duration3 −0.580; 0.014
MSRV-pol RNA/CIDP disease duration3 −0.643; 0.012

Studies
1 + 2

IL-6 detected in serum ratio (%) range4 5/62 (8%) 3–14 14/47 (30%) 3–387 2/19 (11%) 4–10 0.007 0.664 0.007
CXCL10 in serum mean ± SEM (n)4 81 ± 7 (65) 115 ± 10 (49) 60 ± 13 (19) 0.007 0.133 b0.001

In bold: statistically significant differences
1 Relative expression of the targeted RNA to GUS B RNA.
2 HE: High Expression of the targeted RNA.
3 Years.
4 IL-6 and CXCL10 concentrations in serum expressed in pg mL−1.
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for age and gender. In CIDP patients, the mean disease duration was
7.2 ± 1.1 years, ranging from 9 weeks to 47 years. They were treated
by IVIG (47%), oral immunosuppressant (16%), different regimen with
corticosteroids and 27% were untreated at inclusion (Table 1).

3.2. Elevated MSRV Transcripts in PBMC from CIDP.

Results are illustrated in Fig. 1 and statistic analyses are presented
in Table 2.

In Study 1, PBMC mRNA from 20 HBD and 15 CIDP patients passed
quality criteria (Cf. Methods). MSRV-env (p b 0.001; Fig. 1A) and -pol
(p b 0.05; Fig. 1B) expressionswere significantly higher in CIDP patients
than in HBDs. MSRV-env expression was significantly correlated to
MSRV-pol expression (r = 0.713; p b 0.001), and highest MSRV-env &
-pol dual expressions were found in CIDP patients (Table 2; Fig. 1C).

In Study 2, PBMC mRNA passed quality criteria in 28 HBD, 17 CIDP
and 12 OND samples for MSRV-env and in 26 HBD, 14 CIDP and 6
OND samples for MSRV-pol. Results confirmed that MSRV-env and -
pol expressions were elevated in CIDP patients, but not in OND, when
compared to HBD group (Fig. 1D and E respectively; p b 0.001 for both
transcripts). MSRV-env expression was again correlated to MSRV-pol
expression (r = 0.782; p b 0.001) with highest dual MSRV-env
and -pol expressions in CIDP (Table 2; Fig. 1F).

A threshold above which mRNA levels were significantly elevat-
ed (High Expression; HE) was calculated (Cf. Methods). In Study 1,
6 CIDP patients had HE for MSRV-env (40%) but none in HBDs
(0%; p b 0.01). 4 s (27%) and 1 HBD (6%) had HE for MSRV-pol
(p = 0.161). 7/15 CIDPs (47%; p b 0.05 versus HBDs) had HE for
at least one MSRV transcript. A dual MSRV env/pol HE profile was
observed in 0/17 HBDs and 3/15 CIDPs (20%, p = 0.092).

In Study 2, 2 HBDs (7%) versus 6 CIDP (53%) presentedHE forMSRV-
env (p b 0.001). 3 ONDs (25%) hadMSRV-envHE, whichwas not signif-
icantly different from HBD or CIDP groups. 8 CIDP (57%) had HE for
MSRV-pol, which was significantly different from both HBD (12%;
p b 0.01) and OND (0%; p b 0.05) groups. 9/14 CIDP (64%; p b 0.001
and p = 0.05 versus HBDs and ONDs respectively) presented a HE
profile for at least one MSRV transcript. A dual HE profile was observed
in 2/26 HBDs (8%), in 0/6 OND and in 6/14 CIDPs (43%; p b 0.01 versus
ONDs or HBDs; Table 2).

No correlation existed between MSRV-env or -pol expressions and
the age of subjects, the age at disease onset, the gender or the treatment.
Though not evidenced in Study 1, MSRV-env (r = −0.580; p b 0.05)
and -pol (r = −0.643; p b 0.05) expressions in CIDP patients are
inversely correlated to the disease duration in Study 2 (Table 2).

3.3. Elevated IL6 and CXCL10 Levels in CIDP Serum

Weanalyzed IL6 cytokine and CXCL10 chemokine levels in sera from
Studies 1 and 2. Statistics of comparisons between groups are presented
in Table 2.

IL6 values above the limit of detection were more frequent in CIDP
(30%) than in ONDs (11%) andHBDs (8%), whichwas statistically signif-
icant (p b 0.01). 2 CIDP patients presented highly elevated IL6 (230 and
387 pg/mL) whereas the highest IL6 levels in ONDs and HBDS were 10
and 14 pg/mL respectively. Similarly, CXCL10 levels were significantly
higher in serum of CIDP patients (115 ± 10 pg/mL) than in HBDS
(81± 7 pg/mL; p b 0.01) and ONDs (60±13 pg/mL; p b 0.001). No cor-
relation existed between IL6 and CXCL10 expressions, nor with the age
of subjects, the age at disease onset, the gender, the treatment regimen,
nor even with MSRV-env and -pol mRNA levels.

3.4. MSRV-Env Expression in Nerve Biopsies of Patients with CIDP

Distal sensory peripheral nerve (PN) biopsies were examined with
an MSRV-Env specific monoclonal antibody or an isotype control anti-
body. MSRV-Env was detected in biopsies from five CIDP patients out
of seven tested (71%), in the absence of staining with the isotype
control. As shown in Fig. 2, MSRV-Env staining was localized in the
cytoplasm of Schwann cells (SC) (4/5) or in the myelin sheath (1/5).
MSRV-Env staining was not seen in the two control biopsies, one of
which showed inflammatory infiltrates.

3.5. HSC ExpressingMSRV-Env Protein Produce and Release IL6 and CXCL10

We then studied the effects of MSRV-Env expression on in vitro
transfected HSC, mimicking MSRV-Env expression in HSC as observed
in CIDP nerve biopsies. Primary cultured HSCs were transfected with
plasmids encoding the complete MSRV-env protein (Env-T) or
encoding its extracellular domain (Env-SU). Immunocytofluorescence
analyses showed that HSCs strongly express toll-like receptor 4
(TLR4), the pharmacological target of MSRV-Env, at their surface
(Madeira et al., 2016). HSC can thus potentially respond to MSRV-Env
stimulation. HSC phenotype was confirmed by typical morphology
with concomitantly strong expression of the calcium binding S100β



Fig. 2. MSRV-Env is expressed in peripheral nerves biopsies from CIDP patients. Representative immunohistological analysis showing that MSRV-Env immunoreactivity (brown) is
found in the cytoplasm of Schwann cells (low magnification: A; high magnification: B). No staining is observed in the corresponding serial section of the same biopsy incubated with a
non-relevant isotype antibody (C) or in a biopsy from a control neuropathy (D). Scale bar: 0.5 μm.
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protein, P0 myelin protein, and P75/NGF receptor. Specific detection
was confirmed by the absence of staining when incubation only used
the secondary fluorescent antibody (Fig. 3).

As presented in Fig. 4, HSC expressing MSRV-Env or MSRV-Env-SU
for 48 h presented a strong and significant increase of IL6 and CXCL10
transcripts levels (respectively, +151% with p b 0.001 and +887%
with p b 0.01, for Env-T, as well as, +226%and +777% both with
p b 0.001, for Env-SU). MSRV-Env also induced an important release
of IL6 and CXCL10 proteins (respectively, +75% and +555% both with
p b 0.05 for Env-T as well as, +85% and +499% both with p b 0.01 for
Env-SU; Fig. 4A–D). Dosage of MSRV-Env protein in culture media of
transfected HSC showed that Env-T was mostly sequestered at the
plasma membrane level and that a MSRV-Env-SU was better released
from HSC. The specificity of this MSRV-Env mediated effect was
shown with a highly specific neutralizing antibody (GNbAC1, 200 nM)
added shortly after HSC transfection, which significantly inhibited
the increase of IL6 (−21%; p b 0.01) and CXCL10 (−23%; p b 0.01)
transcripts induced by MSRV-env-SU (Fig. 4E–F).

3.6. GNbAC1 Inhibits MSRV-Env Induced IL6 and CXCL10 in HSC

Wedeveloped experimental conditions appropriate for a pharmaco-
logical evaluation of MSRV-Env and GNbAC1 by stimulating HSC for 4 h
with purified and endotoxin-free recombinant MSRV-Env protein
before HSC transcript isolation. A low concentration of MSRV-Env
(3 nM) induced a significant increase of IL6 (+53%; p b 0.001) and
CXCL10 (+172%; p b 0.01) transcript levels in HSC (Fig. 5A–B). The in-
crease of IL6 and CXCL10 expressions induced byMSRV-Env in HSCwas
significantly inhibited by 200 nM GNbAC1 (−43%; p b 0.05 and−79%;
p b 0.01 respectively) and by LPS-RS, a competitive TLR4 antagonist
(Stevens et al., 2013) (−76%; p b 0.01; Fig. 5C).

4. Discussion

After initial detection of HERV-W protein, MSRV-Env, in CIDP cases
within a control group of inflammatory neurological diseases for a
study on MS (Perron et al., 2012), the present study confirms an associ-
ation between MSRV-Env expression and CIDP. This is now supported
by significantly upregulated MSRV-env mRNA transcription in PBMC,
by MSRV-Env protein detection in CIDP peripheral nerve lesions with
dominant expression in Schwan cells and, with evidence of its target
receptor TLR4 on HSC, by direct pro-inflammatory effects of MSRV-
Env iducing IL6 and CXCL10 release from HSC. Overall, about half of
the CIDP patients showed a High Expression profile for MSRV env or
pol. But considering subjects presenting a HE profile for at least one
MSRV transcript, up to 65% were found in CIDP population when only
12% in HBDs and 17% in ONDs. Since env- and pol-encoded proteins
are expressed from different mRNAs (Blond et al., 1999), their correlat-
ed upregulation in CIDPs also indicates that MSRV genome and/or
HERV-W related elements are globally upregulated but also confirm
the specificity of coincident results with two different HERV-W genes.

MSRV-Env has for long been shown to induce innate immune dys-
regulation, autoimmunity and inflammation in cellular and animal
models (Perron et al., 2001, 2013; Rolland et al., 2006). TLR4 activation
revealed to be a prerequisite for the activation of cytopathogenic path-
ways and physiopathological cascades by this endogenous protein
and, as a consequence of its expression, pro-inflammatory cytokines
and chemokines have regularly been evidenced (Rolland et al., 2006;
Kremer et al., 2013; Madeira et al., 2016; Duperray et al., 2015). In the
present study two relevant ones for CIDP and Schwann cells, IL-6 and
CXCL10, were studied.

Unlike available previous studies having investigated IL6 in sera of
CIDP patients (Maimone et al., 1993; Sainaghi et al., 2010), we found
elevated IL6 and CXCL10 levels in CIDP serum when compared to
HBDs, without confounding correlation with age and gender. These
diverging findings can easily be understood when considering that our
study showed detectable levels of IL6 in about 30% of 47 CIDP sera,
whereas these previous works having tested 7 or 8 patients only had
the greatest probability not to include a single case with detectable
level. CXCL10, a chemokine known as a chemoattractant for macro-
phages and T cells (Xuan et al., 2014) was previously detected in the
CSF of CIDP patients in correlation to the degree of inflammation in
proximal segments of spinal nerve roots and to blood nerve barrier
damages (Kieseier et al., 2002; Mahad et al., 2002), andwas also detect-
ed in CIDP lesions (Kieseier et al., 2002). Similarly, IL6 was detected in
the CSF (Maimone et al., 1993) and in sural nerve biopsies of CIDP
patients (Lindenlaub and Sommer, 2003; Yamamoto et al., 2002).
Additionally, Schwann cells can produce CXCL10 (Medeiros et al.,
2015), as well as IL6 (Lu et al., 2009), most particularly after exposure
to LPS, a TLR4 agonist like MSRV-Env (de Leseleuc et al., 2013). The

Image of Fig. 2


Fig. 3. Characterization of human Schwann cells in primary culture. Morphology of HSC in light microscopy (A). Immunocytofluorescence analyses show that HSC in primary culture
strongly express TLR4 (B), S100β (C), P0 myelin protein (D), and P75/NGF receptor (E). No staining is observed when the secondary antibody coupled to FITC is used alone (F).
Cell nuclei are labelled with DAPI (blue), scale bar: 5 μm.
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present study with HSC cultures shown to be TLR4-positive, exposed to
or expressing MSRV-Env, demonstrated a potent induction of both IL6
and CXCL10. As in previous studies on MSRV-Env pathogenic mode of
action (Rolland et al., 2006; Kremer et al., 2013; Madeira et al., 2016;
Duperray et al., 2015), a specific TLR4-driven effect was also confirmed
in HSC with the observed inhibition of MSRV-Env effects by LPS-RS, a
competitive TLR4 antagonist. Thus, MSRV-Env can directly trigger HSC
to release pro-inflammatory effectors through TLR4 activation and
signaling pathways.

It therefore appears that an autoimmune reaction in CIDPmay result
from a TLR4-driven activation of innate immunity byMSRV-Env protein
in immune and neuroglial cell types with potential downstream
superantigen-like effects when T-cells are recruited and exposed to
MSRV-Env (Perron et al., 2001). Amechanism of TLR-conditional activa-
tion of lymphocyte by innate immune and/or antigen presenting cells
has now been evidenced (Kool et al., 2011), which may differentiate
eventual TLR-dependent superantigen effects from the direct T-cell
polyclonal activation observed with bacterial superantigens (Muller-
Alouf et al., 2001). In all instances, superantigenic effects cause
antigen-independent polyclonal activation of T lymphocytes, which
was incriminated in MS (Rudge, 1991) and was more recently experi-
mentally evidenced with MSRV-Env induction of autoimmunity
against the central nervous system myelin proteins in animal models
(Perron et al., 2013). Consistent with this known pathogenic potential,
MSRV-Env protein expression as observed in HSCwithin CIDP peripher-
al nerve lesions may therefore trigger inflammation along peripheral
nerves mirrored by systemic immune dysregulation. Of note, MSRV-
Env was not detected in similar biopsy from a control case presenting
inflammatory lesions with perivascular leukocyte infiltration, which
adds to the demonstration that MSRV-Env is not a consequence of
inflammation, but the reverse.

Thus, MSRV-Env cannot simply represent a peripheral biomarker.
Nonetheless, as MSRV-env and MSRV-pol expressions were inversely
correlated to disease duration, MSRV activity may peak at early stages
of the disease and its early quantification could be of value for CIDP
phenotyping or diagnosis. As it may also reflect some efficacy of long-
term treatments on its recirculation or expression in the bloodstream,
longitudinal and/or transversal studies of accurately representative
cohorts should now be envisaged.

Finally, the present study also showed that the strong pro-
inflammatory upregulation of IL6 and CXCL10 induced by MSRV-
Env in HSC was significantly inhibited by a specific neutralizing anti-
body targeting MSRV-Env, GNbAC1. As this antibody is a humanized
therapeutic IgG4, now in phase II clinical trials in MS (Curtin et al.,

Image of Fig. 3


Fig. 4.Human Schwann cells expressingMSRV-Env produce and release IL6 and CXCL10. HSCswere transfectedwith a plasmid encoding the full lengthMSRV-Env (Env-T) or a fraction of
the extracellular domain of MSRV-Env (Env-SU), or the corresponding empty plasmid (control). Culture media and HSC transcripts were isolated 48 h after transfection. IL6 (A; F) and
CXCL10 (B; F) transcripts levels were quantified by qRT-PCR. IL6 (C), CXCL10 (D) and MSRV-Env-SU (E) proteins levels in the culture media were quantified by ELISA. HSCs were
incubated without (Env-SU) or with GNbAC1 (+GNbAC1) at 200 nM for 48 h after transfection with MSRV-Env-SU (F). Data are expressed in pg/mL (A; B), ng/mL (E), or as relative
expression of the targeted transcript to GUS B reference transcript (C; D; F) and represent Mean ± SEM of 6 to 9 experiments. *P b 0.05, **P b 0.01, ***P b 0.001 versus control (A–E) or
MSRV-Env-SU (F).

197R. Faucard et al. / EBioMedicine 6 (2016) 190–198
2015; Derfuss et al., 2015; Zimmermann et al., 2015), this indicates
potential new avenues for the treatment of CIDP patients with signif-
icantly elevated MSRV expression.

Concluding from these original findings, we propose thatMSRV-Env
is a potential therapeutic target in CIDP, at least in a significant propor-
tion of patients, and that it may become a useful blood biomarker along
with CXCL10 and IL6. This also provides arguments in favor of the hu-
manized monoclonal antibody GNbAC1, as a potentially innovative
treatment to be evaluated in CIDP.
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