260 research outputs found

    Rocking motion induced charging of C60 on h-BN/Ni(111)

    Full text link
    One monolayer of C60 on one monolayer of hexagonal boron nitride on nickel is investigated by photoemission. Between 150 and 250 K the work function decreases and the binding energy of the highest occupied molecular orbital (HOMO) increases by approx. 100 meV. In parallel, the occupancy of the, in the cold state almost empty, lowest unoccupied molecular orbital (LUMO) changes by 0.4 electrons. This charge redistribution is triggered by onset of molecular rocking motion, i.e. by orientation dependent tunneling between the LUMO of C60 and the substrate. The magnitude of the charge transfer is large and cannot be explained within a single particle picture. It is proposed to involve electron-phonon coupling where C60- polaron formation leads to electron self-trapping.Comment: 15 pages, 4 figure

    Characterization of high-quality MgB2(0001) epitaxial films on Mg(0001)

    Full text link
    High-grade MgB2(0001) films were grown on Mg(0001) by means of ultra-high-vacuum molecular beam epitaxy. Low energy electron diffraction and x-ray diffraction data indicate that thick films are formed by epitaxially oriented grains with MgB2 bulk structure. The quality of the films allowed angle-resolved photoemission and polarization dependent x-ray absorption measurements. For the first time, we report the band mapping along the Gamma-A direction and the estimation of the electron-phonon coupling constant l ~ 0.55 for the surface state electrons.Comment: 15 text pages, 6 figures Submitted for publicatio

    Low-Temperature Growth of Carbon Nanotube Forests Consisting of Tubes with Narrow Inner Spacing Using Co/Al/Mo Catalyst on Conductive Supports.

    Get PDF
    We grow dense carbon nanotube forests at 450 °C on Cu support using Co/Al/Mo multilayer catalyst. As a partial barrier layer for the diffusion of Co into Mo, we apply very thin Al layer with the nominal thickness of 0.50 nm between Co and Mo. This Al layer plays an important role in the growth of dense CNT forests, partially preventing the Co-Mo interaction. The forests have an average height of ∼300 nm and a mass density of 1.2 g cm(-3) with tubes exhibiting extremely narrow inner spacing. An ohmic behavior is confirmed between the forest and Cu support with the lowest resistance of ∼8 kΩ. The forest shows a high thermal effusivity of 1840 J s(-0.5) m(-2) K(-1), and a thermal conductivity of 4.0 J s(-1) m(-1) K(-1), suggesting that these forests are useful for heat dissipation devices.This work has been funded by the European projects Technotubes and Grafol. H.S. acknowledges a research fellowship from the Japanese Society for the Promotion of Science (JSPS).This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/acsami.5b04846

    Conjugated polyelectrolyte nano field emission adlayers.

    Get PDF
    Here we report on a straightforward and rapid means of enhancing the field electron emission performance of nascent vertically aligned multi-walled carbon nanotubes by introducing a polar zwitterionic conjugated polyelectrolyte adlayer at the vacuum-emitter interface. We attribute the observed 66% decrease in turn-on electric field to the augmented emitter micro-morphology and shifted surface band structure. The composite emitters can be optically modulated by exploiting the absorption cross-section of the solution cast adlayer, which increases the local carrier concentration which broadens the effective electrostatic shape of the emitter during optical excitation. Assessment via scanning anode field emission microscopy reveals a 25% improvement in DC time stability, a significant reduction in long-term hysteresis shift, and a threefold increase in bandwidth during pulsed mode operation.Oppenheimer TrustThis is the final version of the article. It first appeared from the Royal Society of Chemistry via http://dx.doi.org/10.1039/c6nh00071

    Suppressed Hysteretic Field Emission from Polymer Encapsulated Silver Nanowires

    Get PDF
    Suppression of the hysteretic electron emission in one-dimensional nanomaterial-based electron sources remains a critical barrier preventing their wide scale adoption in various vacuum electronics applications. Here, we report on the suppressed hysteretic performance, and its photo-dependence from conformal poly-vinylpyrrolidone encapsulated percolative Ag nanowire-based electron sources.This work was supported in part by the Oppenheimer Research Trust, Cambridge University, and an Impact Acceleration grant from the Engineering and Physical Sciences Research Council

    Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes

    Get PDF
    Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous.S.H. acknowledges funding from the EPSRC (Grant No. EP/ H047565/1) and from ERC grant InsituNANO (project reference 279342). We acknowledge the Helmholtz-Zentrum-Berlin BESSY II synchrotron, and we thank the BESSY staff for continuous support. We acknowledge partial funding from the EC project Technotubes. C.D. acknowledges the Royal Society for funding and B.C.B. acknowledges a Research Fellowship from Hughes Hall, Cambridge.This is the final published version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/c3ra23304a#!divAbstract

    Transport in polymer-supported chemically-doped CVD graphene

    Get PDF
    In this study we report on the electron transport in flexible-transparent polymer supported chemically doped chemical vapour deposited (CVD) graphene.Oppenheimer Resaerch Trus

    Interplay among work function, electronic structure and stoichiometry in nanostructured VO: X films

    Get PDF
    The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the surface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature supersonic cluster beam deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V 3d-O 2p and V 3d-V 4s hybridizations which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications
    corecore