19,239 research outputs found
Polar communications: Status and recommendations. Report of the Science Working Group
The capabilities of the existing communication links within the polar regions, as well as between the polar regions and the continental United States, are summarized. These capabilities are placed in the context of the principal scientific disciplines that are active in polar research, and in the context of how scientists both utilize and are limited by present technologies. Based on an assessment of the scientific objectives potentially achievable with improved communication capabilities, a list of requirements on and recommendations for communication capabilities necessary to support polar science over the next ten years is given
Investigation of sputtering effects on the moon's surface Eleventh quarterly status report, 25 Oct. 1965 - 24 Jan. 1966
Implications of Lunar 9 moon probe, sputtering yield reduction due to surface roughness, water formation by solar wind bombardment, photometric function of moon, and chemical sputterin
A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem
A recently developed spectral-element adaptive refinement incompressible
magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp.
Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island
coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD
process that can produce sharp current layers and subsequent reconnection and
heating in a high-Lundquist number plasma such as the solar corona [Ng and
Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin
current layers, it is highly desirable to use adaptively or statically refined
grids to resolve them, and to maintain accuracy at the same time. The output of
the spectral-element static adaptive refinement simulations are compared with
simulations using a finite difference method on the same refinement grids, and
both methods are compared to pseudo-spectral simulations with uniform grids as
baselines. It is shown that with the statically refined grids roughly scaling
linearly with effective resolution, spectral element runs can maintain accuracy
significantly higher than that of the finite difference runs, in some cases
achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions
The distribution function of suprathermal ions is found to be self-similar
under conditions relevant to inertial confinement fusion hot-spots. By
utilizing this feature, interference between the hydro-instabilities and
kinetic effects is for the first time assessed quantitatively to find that the
instabilities substantially aggravate the fusion reactivity reduction. The ion
tail depletion is also shown to lower the experimentally inferred ion
temperature, a novel kinetic effect that may explain the discrepancy between
the exploding pusher experiments and rad-hydro simulations and contribute to
the observation that temperature inferred from DD reaction products is lower
than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by
the American Physical Society.
Attractive Potential around a Thermionically Emitting Microparticle
We present a simulation study of the charging of a dust grain immersed in a
plasma, considering the effect of electron emission from the grain (thermionic
effect). It is shown that the OML theory is no longer reliable when electron
emission becomes large: screening can no longer be treated within the
Debye-Huckel approach and an attractive potential well forms, leading to the
possibility of attractive forces on other grains with the same polarity. We
suggest to perform laboratory experiments where emitting dust grains could be
used to create non-conventional dust crystals or macro-molecules.Comment: 3 figures. To appear on Physical Review Letter
Impact of behaviour and lifestyle on bladder health
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98122/1/ijcp12143.pd
The z<=0.1 Surface Brightness Distribution
The surface brightness distribution (SBD) function describes the number
density of galaxies as measured against their central surface brightness.
Because detecting galaxies with low central surface brightnesses is both
time-consuming and complicated, determining the shape of this distribution
function can be difficult. In a recent paper Cross, et al. suggested a
bell-shaped SBD disk-galaxy function which peaks near the canonical Freeman
value of 21.7 and then falls off significantly by 23.5 B mag arcsec-2. This is
in contradiction to previous studies which have typically found flat (slope=0)
SBD functions out to 24 - 25 B mag arcsec^-2 (the survey limits). Here we take
advantage of a recent surface-brightness limited survey by Andreon & Cuillandre
which reaches considerably fainter magnitudes than the Cross, et.al sample (M_B
reaches fainter than -12 for Andreon & Cuillandre while the Cross, et.al sample
is limited to M_B < -16) to re-evaluate both the SBD function as found by their
data and the SBD for a wide variety of galaxy surveys, including the Cross, et
al. data. The result is a SBD function with a flat slope out through the survey
limits of 24.5 B mag arcsec^-2, with high confidence limits.Comment: 5 pages including 5 figures. accepted by A&A
Contribution of Matrix Metalloproteinase-9 to Cerebral Edema and Functional Outcome following Experimental Subarachnoid Hemorrhage
Background: Cerebral edema is an important risk factor for death and poor outcome following subarachnoid hemorrhage (SAH). However, underlying mechanisms are still poorly understood. Matrix metalloproteinase (MMP)-9 is held responsible for the degradation of microvascular basal lamina proteins leading to blood-brain barrier dysfunction and, thus, formation of vasogenic cerebral edema. The current study was conducted to clarify the role of MMP-9 for the development of cerebral edema and for functional outcome after SAH. Methods: SAH was induced in FVB/N wild-type (WT) or MMP-9 knockout (MMP-9(-/-)) mice by endovascular puncture. Intracranial pressure (ICP), regional cerebral blood flow (rCBF), and mean arterial blood pressure (MABP) were continuously monitored up to 30 min after SAH. Mortality was quantified for 7 days after SAH. In an additional series neurological function and body weight were assessed for 3 days after SAH. Subsequently, ICP and brain water content were quantified. Results: Acute ICP, rCBF, and MABP did not differ between WT and MMP-9(-/-) mice, while 7 days' mortality was lower in MMP-9(-/-) mice (p = 0.03; 20 vs. 60%). MMP-9(-/-) mice also exhibited better neurological recovery, less brain edema formation, and lower chronic ICP. Conclusions: The results of the current study suggest that MMP-9 contributes to the development of early brain damage after SAH by promoting cerebral edema formation. Hence, MMP-9 may represent a novel molecular target for the treatment of SAH. Copyright (C) 2011 S. Karger AG, Base
- …