12,213 research outputs found

    Probabilistic simulation of uncertainties in composite uniaxial strengths

    Get PDF
    Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is

    Orbital ordering promotes weakly-interacting S=1/2 dimers in the triangular lattice compound Sr3Cr2O8

    Full text link
    The weakly interacting S=1/2 dimers system Sr3Cr2O8 has been investigated by powder neutron diffraction and inelastic neutron scattering. Our data reveal a structural phase transition below room temperature corresponding to an antiferro-orbital ordering with nearly 90 degrees arrangement of the occupied 3z^2-r^2 d-orbital. This configuration leads to a drastic reduction of the inter-dimer exchange energies with respect to the high temperature orbital-disorder state, as shown by a spin-dimer analysis of the super-superexchange interactions performed using the Extended Huckel Tight Binding method. Inelastic neutron scattering reveals the presence of a quasi non-dispersive magnetic excitation at 5.4 meV, in agreement with the picture of weakly-interacting dimers

    The Physics of ALICE HLT Trigger Modes

    Get PDF
    We discuss different physics cases, mainly of the ALICE TPC, such as pile-up, jets in pp and PbPb, Bottonium and Charmonium spectroscopy, and there corresponding demands on the ALICE High Level Trigger (HLT) System. We show that compression and filter strategies can reduce the data volume by factors of 5 to 10. By reconstructing (sub)events with the HLT, background events can be rejected with a factor of up to 100 while keeping the signal (low cross-section probes). Altogether the HLT improves the discussed physics capabilities of ALICE by a factor of 5-100 in terms of statistics.Comment: 25 pages, 4 figure

    Inertial oscillation of a vertical rotating draft with application to a supercell storm

    Get PDF
    An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell

    Spin fluctuations and superconductivity in powders of Fe_1+xTe_0.7Se_0.3 as a function of interstitial iron concentration

    Full text link
    Using neutron inelastic scattering, we investigate the role of interstitial iron on the low-energy spin fluctuations in powder samples of Fe_{1+x}Te_{0.7}Se_{0.3}. We demonstrate how combining the principle of detailed balance along with measurements at several temperatures allows us to subtract both temperature-independent and phonon backgrounds from S(Q,\omega) to obtain purely magnetic scattering. For small values of interstitial iron (x=0.009(3)), the sample is superconducting (T_{c}=14 K) and displays a spin gap of 7 meV peaked in momentum at wave vector q_{0}=(\pi,\pi) consistent with single crystal results. On populating the interstitial iron sites, the superconducting volume fraction decreases and we observe a filling in of the low-energy magnetic fluctuations and a decrease of the characteristic wave vector of the magnetic fluctuations. For large concentrations of interstitial iron (x=0.048(2)) where the superconducting volume fraction is minimal, we observe the presence of gapless spin fluctuations at a wave vector of q_{0}=(\pi,0). We estimate the absolute total moment for the various samples and find that the amount of interstitial iron does not change the total magnetic spectral weight significantly, but rather has the effect of shifting the spectral weight in Q and energy. These results show that the superconducting and magnetic properties can be tuned by doping small amounts of iron and are suggestive that interstitial iron concentration is also a controlling dopant in the Fe_{1+x}Te_{1-y}Se_{y} phase diagram in addition to the Te/Se ratio.Comment: (10 pages, 8 figures, to be published in Phys. Rev. B

    Revised Pacific-Antarctic plate motions and geophysics of the Menard Fracture Zone

    Get PDF
    A reconnaissance survey of multibeam bathymetry and magnetic anomaly data of the Menard Fracture Zone allows for significant refinement of plate motion history of the South Pacific over the last 44 million years. The right-stepping Menard Fracture Zone developed at the northern end of the Pacific-Antarctic Ridge within a propagating rift system that generated the Hudson microplate and formed the conjugate Henry and Hudson Troughs as a response to a major plate reorganization ∼45 million years ago. Two splays, originally about 30 to 35 km apart, narrowed gradually to a corridor of 5 to 10 km width, while lineation azimuths experienced an 8° counterclockwise reorientation owing to changes in spreading direction between chrons C13o and C6C (33 to 24 million years ago). We use the improved Pacific-Antarctic plate motions to analyze the development of the southwest end of the Pacific-Antarctic Ridge. Owing to a 45° counterclockwise reorientation between chrons C27 and C20 (61 to 44 million years ago) this section of the ridge became a long transform fault connected to the Macquarie Triple Junction. Following a clockwise change starting around chron C13o (33 million years ago), the transform fault opened. A counterclockwise change starting around chron C10y (28 millions years ago) again led to a long transform fault between chrons C6C and C5y (24 to 10 million years ago). A second period of clockwise reorientation starting around chron C5y (10 million years ago) put the transform fault into extension, forming an array of 15 en echelon transform faults and short linking spreading centers

    Cenozoic evolution of Neotethys and implications for the causes of plate motions

    Get PDF
    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to <1 cm/yr near 25 Ma, coeval with the opening of the Red Sea. Ocean closure occurred no later than 10 Ma, and could have occurred prior to this time only if a large amount of continental lithosphere was subducted, suggesting that slowing of Africa significantly predated the Arabia-Eurasia collision. These kinematics imply that Africa's disconnection with the negative buoyancy of the downgoing slab of lithosphere beneath southern Eurasia slowed its motion. The slow, steady rate of northward subduction since 56 Ma contrasts with strongly variable rates of magma production in the Urumieh-Dokhtar arc, implying magma production rate in continental arcs is not linked to subduction rate
    • …
    corecore