2,564 research outputs found
Study aids accuracy of turbopump axial thrust analysis
Test program to verify theory used in calculating axial thrust uses turbopump instrumented with /a/ proximity transducers for measuring shaft position, /b/ a strain gage thrust bearing carrier to measure axial thrust, and /c/ internal pressure taps to define component pressure gradients used in thrust calculations
To develop behavioral tests of vestibular functioning in the Wistar rat
Two tests of vestibular functioning in the rat were developed. The first test was the water maze. In the water maze the rat does not have the normal proprioceptive feedback from its limbs to help it maintain its orientation, and must rely primarily on the sensory input from its visual and vestibular systems. By altering lighting conditions and visual cues the vestibular functioning without visual cues was assessed. Whether there was visual compensation for some vestibular dysfunction was determined. The second test measured vestibular functioning of the rat's behavior on a parallel swing. In this test the rat's postural adjustments while swinging on the swing with the otoliths being stimulated were assessed. Less success was achieved in developing the parallel swing as a test of vestibular functioning than with the water maze. The major problem was incorrect initial assumptions of what the rat's probable behavior on the parallel swing would be
Advanced Launch System propulsion focused technology liquid methane turbopump technical implementation plan
This program will focus on the integration of all functional disciplines of the design, manufacturing, materials, fabrication and producibility to define and demonstrate a highly reliable, easily maintained, low cost liquid methane turbopump as a component for the STBE (Space Transportation Booster Engine) using the STME (main engine) oxygen turbopump. A cost model is to be developed to predict the recurring cost of production hardware and operations. A prime objective of the program is to design the liquid methane turbopump to be used in common with a LH2 turbopump optimized for the STME. Time phasing of the effort is presented and interrelationship of the tasks is defined. Major subcontractors are identified and their roles in the program are described
Advanced superposition methods for high speed turbopump vibration analysis
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given
The performance and application of high speed long life LH2 hybrid bearings for reusable rocket engine turbomachinery
Data are presented for two different experimental programs which were conducted to investigate the characteristics of a hybrid (hydrostatic/ball) bearing operating in liquid hydrogen. The same bearing design was used in both programs. Analytical predictions were made of the bearing characteristics and are compared with the experimental results when possible. The first program used a bearing tester to determine the steady state, transient, and cyclic life characteristics of the bearing over a wide range of operating conditions. The second program demonstrated the feasibility of applying hybrid bearings to an actual high speed turbopump by retrofitting and then testing an existing liquid hydrogen turbopump with the bearings
Study of blade clearance effects on centrifugal pumps
A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given
Optimized pulse sequences for suppressing unwanted transitions in quantum systems
We investigate the nature of the pulse sequence so that unwanted transitions
in quantum systems can be inhibited optimally. For this purpose we show that
the sequence of pulses proposed by Uhrig [Phys. Rev. Lett. \textbf{98}, 100504
(2007)] in the context of inhibition of environmental dephasing effects is
optimal. We derive exact results for inhibiting the transitions and confirm the
results numerically. We posit a very significant improvement by usage of the
Uhrig sequence over an equidistant sequence in decoupling a quantum system from
unwanted transitions. The physics of inhibition is the destructive interference
between transition amplitudes before and after each pulse.Comment: 5 figure
Factors Affecting Feeding Injury to Grasses by Adult Billbugs (Coleoptera: Curculionidae)
Factors associated with feeding injury to grass plants by two species of adult billbugs, Sphenophorus gentilis and S. parvulus, were evaluated. Early season tests utilized adult bluegrass billbugs while later studies involved wildrye billbugs. Types of feeding injury were determined and preferred feeding locations on host plants were identified for each billbug species. Greenhouse and field studies compared different species of grasses, individual plants within a species, and plants from different locations, for billbug susceptibility. The effect of grass plant age and stem size were also tested using bluegrass billbugs.
Using analysis of variance and multiple comparison tests, significant differences in amounts of feeding injury were determined among entries. Wildrye plants from different geographic locations showed large differences in susceptibility to wildrye billbug feeding when compared in a greenhouse study. Grass stem size had an effect on amounts of feeding injury incurred to 2 out of 3 wheatgrasses by bluegrass billbugs. A field study suggested that host plant age was not a factor in susceptibility of slender wheatgrass to bluegrass billbugs.
Implications for screening grasses for resistance to billbugs using adult insects are discussed. Comparisons between greenhouse and field studies are also examined
Entangling photons using a charged quantum dot in a microcavity
We present two novel schemes to generate photon polarization entanglement via
single electron spins confined in charged quantum dots inside microcavities.
One scheme is via entangled remote electron spins followed by
negatively-charged exciton emissions, and another scheme is via a single
electron spin followed by the spin state measurement. Both schemes are based on
giant circular birefringence and giant Faraday rotation induced by a single
electron spin in a microcavity. Our schemes are deterministic and can generate
an arbitrary amount of multi-photon entanglement. Following similar procedures,
a scheme for a photon-spin quantum interface is proposed.Comment: 4 pages, 4 figure
Ocean acidification buffers the physiological responses of the king ragworm Alitta virens to the common pollutant copper
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOcean acidification (OA) has the potential to alter the bioavailability of pH sensitive metals contaminating coastal sediments, particularly copper, by changing their speciation in seawater. Hence OA may drive increased toxicity of these metals to coastal biota. Here, we demonstrate complex interactions between OA and copper on the physiology and toxicity responses of the sediment dwelling polychaete Alitta virens. Worm coelomic fluid pCO2 was not increased by exposure to OA conditions (pHNBS 7.77, pCO2 530 μatm) for 14 days, suggesting either physiological or behavioural responses to control coelomic fluid pCO2. Exposure to 0.25 μM nominal copper caused a decrease in coelomic fluid pCO2 by 43.3% and bicarbonate ions by 44.6% but paradoxically this copper-induced effect was reduced under near-future OA conditions. Hence OA appeared to ‘buffer’ the copper-induced acid-base disturbance. DNA damage was significantly increased in worms exposed to copper under ambient pCO2 conditions, rising by 11.1% compared to the worms in the no copper control, but there was no effect of OA conditions on the level of DNA damage induced by copper when exposed in combination. These interactions differ from the increased copper toxicity under OA conditions reported for several other invertebrate species. Hence this new evidence adds to the developing paradigm that species’ physiology is key in determining the interactions of these two stressors rather than it purely being driven by the changes in metal chemistry under lower seawater pH.University of Exete
- …