56 research outputs found

    Activation of XerCD-dif recombination by the FtsK DNA translocase

    Get PDF
    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation

    Activation of XerCD-dif recombination by the FtsK DNA translocase

    Get PDF
    The FtsK translocase pumps dsDNA directionally at ∼5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation

    SIMcheck:A toolbox for successful super-resolution structured illumination microscopy

    Get PDF
    Three-dimensional structured illumination microscopy (3D-SIM) is a versatile and accessible method for super-resolution fluorescence imaging, but generating high-quality data is challenging, particularly for non-specialist users. We present SIMcheck, a suite of ImageJ plugins enabling users to identify and avoid common problems with 3D-SIM data and assess resolution and data quality through objective control parameters. Additionally, SIMcheck provides advanced calibration tools and utilities for common image processing tasks. This open-source software is applicable to all commercial and custom platforms and will promote routine application of super-resolution SIM imaging in cell biology

    Asymmetry of Chromosome Replichores Renders the DNA Translocase Activity of FtsK Essential for Cell Division and Cell Shape Maintenance in Escherichia coli

    Get PDF
    Bacterial chromosomes are organised as two replichores of opposite polarity that coincide with the replication arms from the ori to the ter region. Here, we investigated the effects of asymmetry in replichore organisation in Escherichia coli. We show that large chromosome inversions from the terminal junction of the replichores disturb the ongoing post-replicative events, resulting in inhibition of both cell division and cell elongation. This is accompanied by alterations of the segregation pattern of loci located at the inversion endpoints, particularly of the new replichore junction. None of these defects is suppressed by restoration of termination of replication opposite oriC, indicating that they are more likely due to the asymmetry of replichore polarity than to asymmetric replication. Strikingly, DNA translocation by FtsK, which processes the terminal junction of the replichores during cell division, becomes essential in inversion-carrying strains. Inactivation of the FtsK translocation activity leads to aberrant cell morphology, strongly suggesting that it controls membrane synthesis at the division septum. Our results reveal that FtsK mediates a reciprocal control between processing of the replichore polarity junction and cell division

    A Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity

    Get PDF
    Background: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. Methodology: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a,400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPSrecognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. Significance: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last step

    Co-Orientation of Replication and Transcription Preserves Genome Integrity

    Get PDF
    In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization

    Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome

    Get PDF
    <p><u>(A) Circular map of the <i>E</i>. <i>coli</i> chromosome</u>: <i>oriC</i>, <i>dif</i> and <i>terD</i> to <i>terB</i> sites are indicated. Numbers refer to the chromosome coordinates (in kb) of MG1655. (<u>B) Linear map of the terminus region:</u> chromosome coordinates are shown increasing from left to right, as in the marker frequency panels (see Figure 1C for example), therefore in the opposite direction to the circular map. In addition to <i>dif</i> and <i>ter</i> sites, the positions of the <i>parS</i><sub>pMT1</sub> sites used for microscopy experiments are indicated. (<u>C) MFA analysis of terminus DNA loss in the <i>recB</i> mutant</u>: sequence read frequencies of exponential phase cells normalized to the total number of reads were calculated for each strain. Ratios of normalized reads in isogenic wild-type and <i>recB</i> mutant are plotted against chromosomal coordinates (in kb). The profile ratio of the terminus region is enlarged and the profile of the corresponding entire chromosomes is shown in inset. Original normalized profiles used to calculate ratios are shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.s005" target="_blank">S1 Fig</a>. The position of <i>dif</i> is indicated by a red arrow. The <i>ter</i> sites that arrest clockwise forks (<i>terC</i>, <i>terB</i>, green arrow) and counter-clockwise forks (<i>terA</i>, <i>terD</i>, blue arrow) are shown. <u>(D) Schematic representation of focus loss in the <i>recB</i> mutant:</u> Time-lapse microscopy experiments showed that loss of a focus in the <i>recB</i> mutant occurs concomitantly with cell division in one of two daughter cells, and that the cell that keeps the focus then generates a focus-less cell at each generation. The percentage of initial events was calculated as the percentage of cell divisions that generate a focus-less cell, not counting the following generations. In this schematic representation, two initial events occurred (generations #2 and #7) out of 9 generations, and focus loss at generation #2 is heritable. Panels shown in this figure were previously published in [<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1007256#pgen.1007256.ref019" target="_blank">19</a>] and are reproduced here to introduce the phenomenon.</p

    Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the replication process of bacteria with circular chromosomes, an odd number of homologous recombination events results in concatenated dimer chromosomes that cannot be partitioned into daughter cells. However, many bacteria harbor a conserved dimer resolution machinery consisting of one or two tyrosine recombinases, XerC and XerD, and their 28-bp target site, <it>dif</it>.</p> <p>Results</p> <p>To study the evolution of the <it>dif/</it>XerCD system and its relationship with replication termination, we report the comprehensive prediction of <it>dif </it>sequences <it>in silico </it>using a phylogenetic prediction approach based on iterated hidden Markov modeling. Using this method, <it>dif </it>sites were identified in 641 organisms among 16 phyla, with a 97.64% identification rate for single-chromosome strains. The <it>dif </it>sequence positions were shown to be strongly correlated with the GC skew shift-point that is induced by replicational mutation/selection pressures, but the difference in the positions of the predicted <it>dif </it>sites and the GC skew shift-points did not correlate with the degree of replicational mutation/selection pressures.</p> <p>Conclusions</p> <p>The sequence of <it>dif </it>sites is widely conserved among many bacterial phyla, and they can be computationally identified using our method. The lack of correlation between <it>dif </it>position and the degree of GC skew suggests that replication termination does not occur strictly at <it>dif </it>sites.</p
    • …
    corecore