17 research outputs found

    A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus

    Get PDF
    BACKGROUND: Wolbachia inherited intracellular bacteria can manipulate the reproduction of their insect hosts through cytoplasmic incompatibility (CI), and certain strains have also been shown to inhibit the replication or dissemination of viruses. Wolbachia strains also vary in their relative fitness effects on their hosts and this is a particularly important consideration with respect to the potential of newly created transinfections for use in disease control. METHODOLOGY/PRINCIPAL FINDINGS: In Aedes albopictus mosquitoes transinfected with the wMel strain from Drosophila melanogaster, which we previously reported to be unable to transmit dengue in lab challenges, no significant detrimental effects were observed on egg hatch rate, fecundity, adult longevity or male mating competitiveness. All these parameters influence the population dynamics of Wolbachia, and the data presented are favourable with respect to the aim of taking wMel to high population frequency. Challenge with the chikungunya (CHIKV) virus, for which Ae. albopictus is an important vector, was conducted and the presence of wMel abolished CHIKV dissemination to the saliva. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that introducing wMel into natural Ae. albopictus populations using bidirectional CI could be an efficient strategy for preventing or reducing the transmission of arboviruses by this species

    CHIKV challenge.

    No full text
    <p>Mosquitoes were allowed to feed on artificial blood meals containing virus suspension and 7 days post infection 35–50 females were used for forced salivation. Samples were titrated by focus fluorescent assay on <i>Ae. albopictus</i> C6/36 cells. The transmission rate was estimated as the percentage of mosquitoes with infectious saliva among tested mosquitoes (A). Saliva samples were titrated by focus fluorescent assay on C6/36 <i>Ae. albopictus</i> cell culture. The total number of plaques was counted and the titer was calculated as FFU/saliva (B). No significant difference was found between Uju.wt and UjuT viral titers using a Wilcoxon rank sum test.</p

    Hatch rate and fecundity of Uju.wMel.

    No full text
    <p>Egg hatch (A) and fecundity or mean number of eggs produced per female per gonotrophic cycle (B) of Uju.wMel was assessed at generation sixteen. Females were blood fed at six days post eclosion, individualized for laying, and eggs hatched after five days. Second instar larvae were counted to calculate percent hatch (A) and eggs per batch per female counted to give fecundity (B). A: Uju.wMel n = 452, UjuT n = 858, Uju.wt n = 508. B: Uju.wMel n = 16, UjuT n = 14, Uju.wt n = 20. Error bars represent the SEM.</p

    Mating competitiveness of Uju.wMel males.

    No full text
    <p>Competitiveness of Uju.wMel males was assessed using three independent replicates of 50 male Uju.wMel : 50 male Uju.wt (<i>w</i>AlbA/B) : 50 females of either Uju.wMel or Uju.wt (total of 300 females in six cages). Hatching embryos indicated a compatible cross where both male and female parents were infected with the same <i>Wolbachia</i>. Error bars show the SEM. No significant differences in male mating competitiveness were found between the two lines with Chi-squared analysis using a likelihood framework.</p

    Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus

    No full text
    Wolbachia inherited bacteria are able to invade insect populations using cytoplasmic incompatibility and provide new strategies for controlling mosquito-borne tropical diseases, such as dengue. The overreplicating wMelPop strain was recently shown to strongly inhibit the replication of dengue virus when introduced into Aedes aegypti mosquitoes, as well as to stimulate chronic immune up-regulation. Here we show that stable introduction of the wMel strain of Drosophila melanogaster into Aedes albopictus, a vector of dengue and other arboviruses, abolished the transmission capacity of dengue virus-challenged mosquitoes. Immune up-regulation was observed in the transinfected line, but at a much lower level than that previously found for transinfected Ae. aegypti. Transient infection experiments suggest that this difference is related to Ae. albopictus immunotolerance of Wolbachia, rather than to the Wolbachia strain used. This study provides an example of strong pathogen inhibition in a naturally Wolbachia-infected mosquito species, demonstrating that this inhibition is not limited to naturally naĂŻve species, and suggests that the Wolbachia strain is more important than host background for viral inhibition. Complete bidirectional cytoplasmic incompatibility was observed with WT strains infected with the naturally occurring Ae. albopictus Wolbachia, and this provides a mechanism for introducing wMel into natural populations of this species

    The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in Aedes albopictus

    Get PDF
    International audienceBACKGROUND:The chikungunya (CHIK) outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN), but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV) in Ae. albopictus, a similar effect was not observed with DEN virus (DENV).METHODS/PRINCIPAL FINDINGS:To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i) Wolbachia does not affect viral replication, (ii) Wolbachia restricts viral density in salivary glands, and (iii) Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal.CONCLUSIONS:We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated
    corecore