48 research outputs found

    Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies

    Get PDF
    Background Very little is known for the direction or causality of the relationship between lifetime sleep experiences and in vivo Alzheimers disease (AD) pathologies. This study aimed to examine the relationship between sleep experiences during the young adulthood, midlife, and late-life periods and in vivo cerebral beta-amyloid (Aβ) deposition and AD signature regional neurodegeneration in cognitively normal (CN) old adults. Methods This study included 202 CN old adults who participated in the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimers Disease (KBASE) study. All participants underwent a comprehensive clinical assessment, [11C] Pittsburgh Compound B positron emission tomography (PET), [18F] Fluorodeoxyglucose-PET, and magnetic resonance imaging. The quality and duration of sleep were assessed for the following age periods: 20–30s, 40–50s, and the most recent month. All analyses were adjusted for age, gender, education, apolipoprotein E ε4 status, vascular risk score, Hamilton Depression Rating Scale score, and use of sleep medication. Results Bad sleep quality and short sleep duration during midlife were significantly associated with increased Aβ deposition and AD signature regional hypometabolism, respectively. Although current bad sleep quality appeared to be associated with increased Aβ accumulation, this association disappeared after controlling for the effects of midlife sleep quality. Neither the quality nor duration of sleep during young adulthood was related to Aβ burden or neurodegeneration. Conclusions Bad sleep quality during midlife increases pathological Aβ deposition in the brain, while short sleep duration during the same period accelerates regional hypometabolism.This study was supported by a grant from the Ministry of Science, ICT, and Future Planning, Republic of Korea (Grant No: NRF-2014M3C7A1046042) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No: HI18C0630). The funding source had no role in the design of the study; collection, analysis, and interpretation of the data; and writing of the manuscript

    Synergistic interaction between APOE and family history of Alzheimers disease on cerebral amyloid deposition and glucose metabolism

    Get PDF
    Background Recently, the field of gene-gene or gene-environment interaction research appears to have gained growing interest, although it is seldom investigated in Alzheimers disease (AD). Hence, the current study aims to investigate interaction effects of the key genetic and environmental risks—the apolipoprotein ε4 allele (APOE4) and family history of late-onset AD (FH)—on AD-related brain changes in cognitively normal (CN) middle-aged and older adults. Methods [11C] Pittsburg compound-B (PiB) positron emission tomography (PET) imaging as well as [18F] fluoro-2-deoxyglucose (FDG) PET that were simultaneously taken with T1-weighted magnetic resonance imaging (MRI) were obtained from 268 CNs from the Korean Brain Aging Study for Early Diagnosis and Prediction of AD (KBASE). Composite standardized uptake value ratios were obtained from PiB-PET and FDG-PET images in the AD signature regions of interests (ROIs) and analyzed. Voxel-wise analyses were also performed to examine detailed regional changes not captured by the ROI analyses. Results A significant synergistic interaction effect was found between the APOE4 and FH on amyloid-beta (Aβ) deposition in the AD signature ROIs as well as other regions. Synergistic interaction effects on cerebral glucose metabolism were observed in the regions not captured by the AD signature ROIs, particularly in the medial temporal regions. Conclusions Strong synergistic effects of APOE4 and FH on Aβ deposition and cerebral glucose metabolism in CN adults indicate possible gene-to-gene or gene-to-environment interactions that are crucial for pathogenesis of AD involving Aβ. Other unspecified risk factors—genes and/or environmental—that are captured by the positive FH status might either coexpress or interact with APOE4 to alter AD-related brain changes in CN. Healthy people with both FH and APOE4 need more attention for AD prevention.This study was supported by a grant from the Ministry of Science and ICT, Republic of Korea (grant no. NRF-2014M3C7A1046042). The funding source had no role in the study design, data collection, data analysis, data interpretation, writing of the manuscript, or decision to submit it for publication

    Association of carotid and intracranial stenosis with Alzheimers disease biomarkers

    Get PDF
    Background To clarify whether atherosclerosis of the carotid and intracranial arteries is related to Alzheimers disease (AD) pathology in vivo, we investigated the associations of carotid and intracranial artery stenosis with cerebral beta-amyloid (Aβ) deposition and neurodegeneration in middle- and old-aged individuals. Given different variations of the pathologies between cognitive groups, we focused separately on cognitively normal (CN) and cognitively impaired (CI) groups. Methods A total of 281 CN and 199 CI (mild cognitive impairment and AD dementia) subjects underwent comprehensive clinical assessment, [11C] Pittsburgh compound B-positron emission tomography, and magnetic resonance (MR) imaging including MR angiography. We evaluated extracranial carotid and intracranial arteries for the overall presence, severity (i.e., number and degree of narrowing), and location of stenosis. Results We found no associations between carotid and intracranial artery stenosis and cerebral Aβ burden in either the CN or the CI group. In terms of neurodegeneration, exploratory univariable analyses showed associations between the presence and severity of stenosis and regional neurodegeneration biomarkers (i.e., reduced hippocampal volume [HV] and cortical thickness in the AD-signature regions) in both the CN and CI groups. In confirmatory multivariable analyses controlling for demographic covariates and diagnosis, the association between number of stenotic intracranial arteries ≥ 2 and reduced HV in the CI group remained significant. Conclusions Neither carotid nor intracranial artery stenosis appears to be associated with brain Aβ burden, while intracranial artery stenosis is related to amyloid-independent neurodegeneration, particularly hippocampal atrophy.This study was supported by a grant from the Ministry of Science and ICT, Republic of Korea (grant nos. NRF-2014M3C7A1046042, 2017R1A2B2008412, and 2018M3C7A1056888); by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant nos. HI18C0630 and HI19C0149); by a grant no. 04-20190500 from the SNUH Research Fund; and by a grant no. 06-20191860 from the Scientific Research Fund of the Korean Society of Magnetic Resonance in Medicine (2019). The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Prediction of Cerebral Amyloid With Common Information Obtained From Memory Clinic Practice

    Get PDF
    Background: Given the barriers prohibiting the broader utilization of amyloid imaging and high screening failure rate in clinical trials, an easily available and valid screening method for identifying cognitively impaired patients with cerebral amyloid deposition is needed. Therefore, we developed a prediction model for cerebral amyloid positivity in cognitively impaired patients using variables that are routinely obtained in memory clinics.Methods: Six hundred and fifty two cognitively impaired subjects from the Korean Brain Aging Study for the Early diagnosis and prediction of Alzheimer disease (KBASE) and the Alzheimer’s Disease Neuroimaging Initiative-2 (ADNI-2) cohorts were included in this study (107 amnestic mild cognitive impairment (MCI) and 69 Alzheimer’s disease (AD) dementia patients for KBASE cohort, and 332 MCI and 144 AD dementia patients for ADNI-2 cohort). Using the cross-sectional dataset from the KBASE cohort, a multivariate stepwise logistic regression analysis was conducted to develop a cerebral amyloid prediction model using variables commonly obtained in memory clinics. For each participant, the logit value derived from the final model was calculated, and the probability for being amyloid positive, which was calculated from the logit value, was named the amyloid prediction index. The final model was validated using an independent dataset from the ADNI-2 cohort.Results: The final model included age, sex, years of education, history of hypertension, apolipoprotein ε4 positivity, and score from a word list recall test. The model predicted that younger age, female sex, higher educational level, absence of hypertension history, presence of apolipoprotein ε4 allele, and lower score of word list recall test are associated with higher probability for being amyloid positive. The amyloid prediction index derived from the model was proven to be valid across the two cohorts. The area under the curve was 0.873 (95% confidence interval 0.815 to 0.918) for the KBASE cohort, and 0.808 (95% confidence interval = 0.769 to 0.842) for ADNI-2 cohort.Conclusion: The amyloid prediction index, which was based on commonly available clinical information, can be useful for screening cognitively impaired individuals with a high probability of amyloid deposition in therapeutic trials for early Alzheimer’s disease as well as in clinical practice

    APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer's Disease Risk in a Multiracial Sample

    Get PDF
    Variants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Anesthetic management for inhibiting sympathetic activation in an adolescent patient diagnosed with catecholaminergic polymorphic ventricular tachycardia and undergoing left cardiac sympathetic denervation: A case report

    No full text
    Key Clinical Message Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a genetic disorder in which catecholamine release during exercise or emotional stress cause fatal tachyarrhythmias. In this paper, we discuss methods to minimize the sympathetic stimulation that can occur during the perioperative period in patients undergoing left cardiac sympathetic denervation to surgically treat CPVT

    Fabrication and Characterization of Novel Silk Fiber-Optic SERS Sensor with Uniform Assembly of Gold Nanoparticles

    No full text
    Biocompatible optical fibers and waveguides are gaining attention as promising platforms for implantable biophotonic devices. Recently, the distinct properties of silk fibroin were extensively explored because of its unique advantages, including flexibility, process compatibility, long-term biosafety, and controllable biodegradability for in vitro and in vivo biomedical applications. In this study, we developed a novel silk fiber for a sensitive optical sensor based on surface-enhanced Raman spectroscopy (SERS). In contrast to conventional plasmonic nanostructures, which employ expensive and time-consuming fabrication processes, gold nanoparticles were uniformly patterned on the top surface of the fiber employing a simple and cost-effective convective self-assembly technique. The fabricated silk fiber-optic SERS probe presented a good performance in terms of detection limit, sensitivity, and linearity. In particular, the uniform pattern of gold nanoparticles contributed to a highly linear sensing feature compared to the commercial multi-mode fiber sample with an irregular and aggregated distribution of gold nanoparticles. Through further optimization, silk-based fiber-optic probes can function as useful tools for highly sensitive, cost-effective, and easily tailored biophotonic platforms, thereby offering new capabilities for future implantable SERS devices

    Early Use of ECMO for Refractory Kounis Syndrome Concealed by General Anesthesia—A Case Report

    No full text
    A 46-year-old woman demonstrated refractory Kounis syndrome (KS) after induction of anesthesia. Despite conventional management of anaphylaxis and advanced cardiac life support, her cardiovascular function continued to deteriorate until she had a cardiac arrest, and after extracorporeal membrane oxygenation (ECMO) therapy, electrical cardiac activity reappeared. A large number of patients with KS—“allergic angina syndrome”—has been known to recover well with vasodilators; however, this patient showed antibiotics-induced refractory KS during general anesthesia. Severe bronchospasms with desaturation appeared as initial anaphylactic features; however, these did not respond to conventional treatment for anaphylaxis. Patient’s hemodynamic signs eventually worsened, leading to cardiac arrest despite ephedrine administration and chest compressions. During cardiopulmonary cerebral resuscitation, the central line was secured, and epinephrine, atropine, as well as sodium bicarbonate were administered repeatedly; nevertheless, cardiac arrest was sustained. After initiation of veno-arterial ECMO, atrial fibrillation was observed, which was later converted to sinus tachycardia by electrical cardioversions and amiodarone. Coronary angiography was performed before the patient was admitted to the intensive care unit; there were no indications of an impending cardiac arrest. The patient was discharged uneventfully owing to early use of ECMO despite the emergence of KS symptoms that were initially masked by anesthesia but later worsened abruptly

    Associations of thyroid hormone serum levels with in-vivo Alzheimer’s disease pathologies

    Get PDF
    Abstract Background The present study investigated the relationships between thyroid hormone serum levels or thyroid-stimulating hormone (TSH) and two Alzheimer’s disease (AD)-specific biomarkers, cerebral amyloid beta (Aβ) burden and glucose metabolism, in AD-signature brain regions in cognitively normal (CN) middle-aged and older individuals. Methods This study assessed 148 CN individuals who received comprehensive clinical and neuropsychological assessments that included 11C-Pittsburgh Compound B (PiB)-positron emission tomography (PET) scans, 18F-deoxyglucose (FDG)-PET scans, and the quantification of serum triiodothyronine (T3), free T3, free thyroxine (fT4), and TSH levels. Results All participants were clinically euthyroid. Independent negative associations were found between serum fT4 levels and global cerebral Aβ deposition after controlling for the effects of age, gender, and the apolipoprotein E ε4 (APOEε4) genotype. Although serum TSH levels were not associated with global cerebral Aβ deposition, they had a significant negative association with glucose metabolism in the precuneus/posterior cingulate cortex after controlling for age, gender, and the APOEε4 genotype. No other thyroid hormones exhibited relationships with either brain Aβ burden or glucose metabolism. Conclusions Even in a clinical euthyroid state, low serum fT4 and high serum TSH levels appear to be differentially associated with AD-specific brain changes
    corecore