31,684 research outputs found
Domain wall switching: optimizing the energy landscape
It has recently been suggested that exchange spring media offer a way to
increase media density without causing thermal instability
(superparamagnetism), by using a hard and a soft layer coupled by exchange.
Victora has suggested a figure of merit xi = 2 E_b/mu_0 m_s H_sw, the ratio of
the energy barrier to that of a Stoner-Wohlfarth system with the same switching
field, which is 1 for a Stoner-Wohlfarth (coherently switching) particle and 2
for an optimal two-layer composite medium. A number of theoretical approaches
have been used for this problem (e.g., various numbers of coupled
Stoner-Wohlfarth layers and continuum micromagnetics). In this paper we show
that many of these approaches can be regarded as special cases or
approximations to a variational formulation of the problem, in which the energy
is minimized for fixed magnetization. The results can be easily visualized in
terms of a plot of the energy as a function of magnetic moment m_z, in which
both the switching field [the maximum slope of E(m_z)] and the stability
(determined by the energy barrier E_b) are geometrically visible. In this
formulation we can prove a rigorous limit on the figure of merit xi, which can
be no higher than 4. We also show that a quadratic anistropy suggested by Suess
et al comes very close to this limit.Comment: Acccepted for proceedings of Jan. 2007 MMM Meeting, paper BE-0
Effects of 3-d and 4-d-transition metal substitutional impurities on the electronic properties of CrO2
We present first-principles based density functional theory calculations of
the electronic and magnetic structure of CrO2 with 3d (Ti through Cu) and 4d
(Zr through Ag) substitutional impurities. We find that the half-metallicity of
CrO2 remains intact for all of the calculated substitutions. We also observe
two periodic trends as a function of the number of valence electrons: if the
substituted atom has six or fewer valence electrons (Ti-Cr or Zr-Mo), the
number of down spin electrons associated with the impurity ion is zero,
resulting in ferromagnetic (FM) alignment of the impurity magnetic moment with
the magnetization of the CrO2 host. For substituent atoms with eight to ten
(Fe-Ni or Ru-Pd with the exception of Ni), the number of down spin electrons
contributed by the impurity ion remains fixed at three as the number
contributed to the majority increases from one to three resulting in
antiferromagnetic (AFM) alignment between impurity moment and host
magnetization. The origin of this variation is the grouping of the impurity
states into 3 states with approximate "t2g" symmetry and 2 states with
approximate "eg" symmetry. Ni is an exception to the rule because a
Jahn-Teller-like distortion causes a splitting of the Ni eg states. For Mn and
Tc, which have 8 valence electrons, the zero down spin and 3 down spin
configurations are very close in energy. For Cu and Ag atoms, which have 11
valence electrons, the energy is minimized when the substituent ion contributes
5 Abstract down-spin electrons. We find that the interatomic exchange
interactions are reduced for all substitutions except for the case of Fe for
which a modest enhancement is calculated for interactions along certain
crystallographic directions.Comment: 26 pages, 10 figures, 2 table
Unsung heroes: Constituency election agents in British general elections
Despite their central role in the electoral process, constituency agents have been largely overlooked by political scientists and this article seeks to rectify the omission. It sketches the origins and development of the role of agent from the late 19th century and suggests that a serious rethink of the role took place in the 1990s. Survey-based evidence about the social characteristics of agents is presented confirming that they are largely middle-aged, middle-class, well-educated men. They are also becoming more experienced, offer realistic assessments of the impact of constituency campaigning and, arguably, many take a long-term view of how their party's support can be maximised
Splitting The Gluon?
In the strongly correlated environment of high-temperature cuprate
superconductors, the spin and charge degrees of freedom of an electron seem to
separate from each other. A similar phenomenon may be present in the strong
coupling phase of Yang-Mills theories, where a separation between the color
charge and the spin of a gluon could play a role in a mass gap formation. Here
we study the phase structure of a decomposed SU(2) Yang-Mills theory in a mean
field approximation, by inspecting quantum fluctuations in the condensate which
is formed by the color charge component of the gluon field. Our results suggest
that the decomposed theory has an involved phase structure. In particular,
there appears to be a phase which is quite reminiscent of the superconducting
phase in cuprates. We also find evidence that this phase is separated from the
asymptotically free theory by an intermediate pseudogap phase.Comment: Improved discussion of magnetic nature of phases; removed
unsubstantiated speculation about color confinemen
Mn L edge resonant x-ray scattering in manganites: Influence of the magnetic state
We present an analysis of the dependence of the resonant orbital order and
magnetic scattering spectra on the spin configuration. We consider an arbitrary
spin direction with respect to the local crystal field axis, thus lowering
significantly the local symmetry. To evaluate the atomic scattering in this
case, we generalized the Hannon-Trammel formula and implemented it inside the
framework of atomic multiplet calculations in a crystal field. For an
illustration, we calculate the magnetic and orbital scattering in the CE phase
of \lsmo in the cases when the spins are aligned with the crystal lattice
vector (or equivalently ) and when they are rotated in the
-plane by 45 with respect to this axis. Magnetic spectra differ
for the two cases. For the orbital scattering, we show that for the former
configuration there is a non negligible ()
scattering component, which vanishes in the 45 case, while the () components are similar in the two cases. From the
consideration of two 90 spin canted structures, we conclude there is a
significant dependence of the orbital scattering spectra on the spin
arrangement. Recent experiments detected a sudden decrease of the orbital
scattering intensity upon increasing the temperature above the N\' eel
temperature in \lsmo. We discuss this behavior considering the effect of
different types of misorientations of the spins on the orbital scattering
spectrum.Comment: 8 figures. In the revised version, we added a note, a reference, and
a few minor changes in Figure 1 and the text. Accepted in Physical Review
Microscopic expressions for the thermodynamic temperature
We show that arbitrary phase space vector fields can be used to generate
phase functions whose ensemble averages give the thermodynamic temperature. We
describe conditions for the validity of these functions in periodic boundary
systems and the Molecular Dynamics (MD) ensemble, and test them with a
short-ranged potential MD simulation.Comment: 21 pages, 2 figures, Revtex. Submitted to Phys. Rev.
The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint
The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of
quantum relativistic kinematics generated by fifteen generators. It is obtained
from imposing stability conditions after attempting to combine the Lie algebras
of quantum mechanics and relativity which by themselves are stable, however not
when combined. In this paper we show how the sixteen dimensional Clifford
algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to
the SPHA avoids the traditional stability considerations, relying instead on
the fact that CL(1,3) is a semi-simple algebra and therefore stable. It is
therefore conceptually easier and more straightforward to work with a Clifford
algebra. The Clifford algebra path suggests the next evolutionary step toward a
theory of physics at the interface of GR and QM might be to depart from working
in space-time and instead to work in space-time-momentum.Comment: 14 page
Research study of some RAM antennas Final report, 18 Nov. 1964 - 18 Jun. 1965
Input impedance and radiation pattern determinations for cylindrical gap, waveguide excited and circular waveguide slot antenna array
- âŠ