36 research outputs found

    Global Functional Atlas of \u3cem\u3eEscherichia coli\u3c/em\u3e Encompassing Previously Uncharacterized Proteins

    Get PDF
    One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans’ biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a “systems-wide” functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins

    Conserved network of proteins essential for bacterial viability

    No full text
    The yjeE, yeaZ, and ygjD genes are highly conserved in the genomes of eubacteria, and ygjD orthologs are also found throughout the Archaea and eukaryotes. In this study, we have constructed conditional expression strains for each of these genes in the model organism Escherichia coli K12. We show that each gene is essential for the viability of E. coli under laboratory growth conditions. Growth of the conditional strains under nonpermissive conditions results in dramatic changes in cell ultrastructure. Deliberate repression of the expression of yeaZ results in cells with highly condensed nucleoids, while repression of yjeE and ygjD expression results in at least a proportion of very enlarged cells with an unusual peripheral distribution of DNA. Each of the three conditional expression strains can be complemented by multicopy clones harboring the rstA gene, which encodes a two-component-system response regulator, strongly suggesting that these proteins are involved in the same essential cellular pathway. The results of bacterial two-hybrid experiments show that YeaZ can interact with both YjeE and YgjD but that YgjD is the preferred interaction partner. The results of in vitro experiments indicate that YeaZ mediates the proteolysis of YgjD, suggesting that YeaZ and YjeE act as regulators to control the activity of this protein. Our results are consistent with these proteins forming a link between DNA metabolism and cell division

    Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase

    No full text
    AAA+ ATPases are ubiquitous proteins that employ the energy obtained from ATP hydrolysis to remodel proteins, DNA, or RNA. The MoxR family of AAA+ proteins is widespread throughout bacteria and archaea but is largely uncharacterized. Limited work with specific members has suggested a potential role as molecular chaperones involved in the assembly of protein complexes. As part of an effort aimed at determining the function of novel AAA+ chaperones in Escherichia coli, we report the characterization of a representative member of the MoxR family, YieN, which we have renamed RavA (regulatory ATPase variant A). We show that the ravA gene exists on an operon with another gene encoding a protein, YieM, of unknown function containing a Von Willebrand Factor Type A domain. RavA expression is under the control of the sigma(S) transcription factor, and its levels increase toward late log/early stationary phase, consistent with its possible role as a general stress-response protein. RavA functions as an ATPase and forms hexameric oligomers. Importantly, we demonstrate that RavA interacts strongly with inducible lysine decarboxylase (LdcI or CadA) forming a large cage-like structure consisting of two LdcI decamers linked by a maximum of five RavA oligomers. Surprisingly, the activity of LdcI does not appear to be affected by binding to RavA in a number of in vitro and in vivo assays, however, complex formation results in the stimulation of RavA ATPase activity. Data obtained suggest that the RavA-LdcI interaction may be important for the regulation of RavA activity against its targets

    Independence of Nitrate and Nitrite Inhibition of <i>Desulfovibrio vulgaris</i> Hildenborough and Use of Nitrite as a Substrate for Growth

    No full text
    Sulfate-reducing microbes, such as Desulfovibrio vulgaris Hildenborough, cause “souring” of petroleum reservoirs through produced sulfide and precipitate heavy metals, either as sulfides or by alteration of the metal reduction state. Thus, inhibitors of these microbes, including nitrate and nitrite ions, are studied in order to limit their impact. Nitrite is a potent inhibitor of sulfate reducers, and it has been suggested that nitrate does not inhibit these microbes directly but by reduction to nitrite, which serves as the ultimate inhibitor. Here we provide evidence that nitrate inhibition of D. vulgaris can be independent of nitrite production. We also show that D. vulgaris can use nitrite as a nitrogen source or terminal electron acceptor for growth. Moreover, we report that use of nitrite as a terminal electron acceptor requires nitrite reductase (<i>nrfA</i>) as a D. vulgaris <i>nrfA</i> mutant cannot respire nitrite but remains capable of utilizing nitrite as a nitrogen source. These results illuminate previously uncharacterized metabolic abilities of D. vulgaris that may allow niche expansion in low-sulfate environments. Understanding these abilities may lead to better control of sulfate-reducing bacteria in industrial settings and more accurate prediction of their interactions in the environment
    corecore