8 research outputs found

    Observations of Stratocumulus Clouds and Their Effect on the Eastern Pacific Surface Heat Budget along 20°S

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-11-00618.1.Widespread stratocumulus clouds were observed on nine transects from seven research cruises to the southeastern tropical Pacific Ocean along 20°S, 75°–85°W in October–November of 2001–08. The nine transects sample a unique combination of synoptic and interannual variability affecting the clouds; their ensemble diagnoses longitude–vertical sections of the atmosphere, diurnal cycles of cloud properties and drizzle statistics, and the effect of stratocumulus clouds on surface radiation. Mean cloud fraction was 0.88, and 67% of 10-min overhead cloud fraction observations were overcast. Clouds cleared in the afternoon [1500 local time (LT)] to a minimum of fraction of 0.7. Precipitation radar found strong drizzle with reflectivity above 40 dBZ. Cloud-base (CB) heights rise with longitude from 1.0 km at 75°W to 1.2 km at 85°W in the mean, but the slope varies from cruise to cruise. CB–lifting condensation level (LCL) displacement, a measure of decoupling, increases westward. At night CB–LCL is 0–200 m and increases 400 m from dawn to 1600 LT, before collapsing in the evening. Despite zonal gradients in boundary layer and cloud vertical structure, surface radiation and cloud radiative forcing are relatively uniform in longitude. When present, clouds reduce solar radiation by 160 W m−2 and radiate 70 W m−2 more downward longwave radiation than clear skies. Coupled Model Intercomparison Project phase 3 (CMIP3) simulations of the climate of the twentieth century show 40 ± 20 W m−2 too little net cloud radiative cooling at the surface. Simulated clouds have correct radiative forcing when present, but models have ~50% too few clouds

    Weather Sensitive High Spatio-Temporal Resolution Transportation Electric Load Profiles For Multiple Decarbonization Pathways

    Full text link
    Electrification of transport compounded with climate change will transform hourly load profiles and their response to weather. Power system operators and EV charging stakeholders require such high-resolution load profiles for their planning studies. However, such profiles accounting whole transportation sector is lacking. Thus, we present a novel approach to generating hourly electric load profiles that considers charging strategies and evolving sensitivity to temperature. The approach consists of downscaling annual state-scale sectoral load projections from the multi-sectoral Global Change Analysis Model (GCAM) into hourly electric load profiles leveraging high resolution climate and population datasets. Profiles are developed and evaluated at the Balancing Authority scale, with a 5-year increment until 2050 over the Western U.S. Interconnect for multiple decarbonization pathways and climate scenarios. The datasets are readily available for production cost model analysis. Our open source approach is transferable to other regions

    Multisector Dynamics: Advancing the Science of Complex Adaptive Human-Earth Systems

    Get PDF
    The field of MultiSector Dynamics (MSD) explores the dynamics and co-evolutionary pathways of human and Earth systems with a focus on critical goods, services, and amenities delivered to people through interdependent sectors. This commentary lays out core definitions and concepts, identifies MSD science questions in the context of the current state of knowledge, and describes ongoing activities to expand capacities for open science, leverage revolutions in data and computing, and grow and diversify the MSD workforce. Central to our vision is the ambition of advancing the next generation of complex adaptive human-Earth systems science to better address interconnected risks, increase resilience, and improve sustainability. This will require convergent research and the integration of ideas and methods from multiple disciplines. Understanding the tradeoffs, synergies, and complexities that exist in coupled human-Earth systems is particularly important in the context of energy transitions and increased future shocks
    corecore