3,068 research outputs found

    Entropic Elasticity of Double-Strand DNA Subject to Simple Spatial Constraints

    Full text link
    The aim of the present paper is the study of the entropic elasticity of the dsDNA molecule, having a cristallographic length L of the order of 10 to 30 persistence lengths A, when it is subject to spatial obstructions. We have not tried to obtain the single molecule partition function by solving a Schodringer-like equation. We prefer to stay within a discretized version of the WLC model with an added one-monomer potential, simulating the spatial constraints. We derived directly from the discretized Boltzmann formula the transfer matrix connecting the partition functions relative to adjacent "effective monomers". We have plugged adequate Dirac delta-functions in the functional integral to ensure that the monomer coordinate and the tangent vector are independent variables. The partition function is, then, given by an iterative process which is both numerically efficient and physically transparent. As a test of our discretized approach, we have studied two configurations involving a dsDNA molecule confined between a pair of parallel plates.Comment: The most formal developments of Section I have been moved into an appendix and replaced by a direct derivation of the transfer matrix used in the applications. of Section II. Two paragraphs and two figures have been added to clarify the physical interpretation of the result

    Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the Potts model partition function Z(G,q,v)Z(G,q,v) for arbitrary qq and temperature-like variable vv on nn-vertex strip graphs GG of the honeycomb lattice for a variety of transverse widths equal to LyL_y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=j=1NZ,G,λcZ,G,j(λZ,G,j)mZ(G,q,v)=\sum_{j=1}^{N_{Z,G,\lambda}} c_{Z,G,j}(\lambda_{Z,G,j})^m, where mm denotes the number of repeated subgraphs in the longitudinal direction. We give general formulas for NZ,G,jN_{Z,G,j} for arbitrary LyL_y. We also present plots of zeros of the partition function in the qq plane for various values of vv and in the vv plane for various values of qq. Explicit results for partition functions are given in the text for Ly=2,3L_y=2,3 (free) and Ly=4L_y=4 (cylindrical), and plots of partition function zeros are given for LyL_y up to 5 (free) and Ly=6L_y=6 (cylindrical). Plots of the internal energy and specific heat per site for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file

    Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance

    Full text link
    Mesoscopic particles immersed in a critical fluid experience long-range Casimir forces due to critical fluctuations. Using field theoretical methods, we investigate the Casimir interaction between two spherical particles and between a single particle and a planar boundary of the fluid. We exploit the conformal symmetry at the critical point to map both cases onto a highly symmetric geometry where the fluid is bounded by two concentric spheres with radii R_- and R_+. In this geometry the singular part of the free energy F only depends upon the ratio R_-/R_+, and the stress tensor, which we use to calculate F, has a particularly simple form. Different boundary conditions (surface universality classes) are considered, which either break or preserve the order-parameter symmetry. We also consider profiles of thermodynamic densities in the presence of two spheres. Explicit results are presented for an ordinary critical point to leading order in epsilon=4-d and, in the case of preserved symmetry, for the Gaussian model in arbitrary spatial dimension d. Fundamental short-distance properties, such as profile behavior near a surface or the behavior if a sphere has a `small' radius, are discussed and verified. The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B 51, 13717 (1995

    Conceptualizing Cybercrime: Definitions, Typologies and Taxonomies

    Get PDF
    Cybercrime is becoming ever more pervasive and yet the lack of consensus surrounding what constitutes a cybercrime has a significant impact on society, legal and policy response, and academic research. Difficulties in understanding cybercrime begin with the variability in terminology and lack of consistency in cybercrime legislation across jurisdictions. In this review, using a structured literature review methodology, key cybercrime definitions, typologies and taxonomies were identified across a range of academic and non-academic (grey literature) sources. The findings of this review were consolidated and presented in the form of a new classification framework to understand cybercrime and cyberdeviance. Existing definitions, typologies and taxonomies were evaluated, and key challenges were identified. Whilst conceptualizing cybercrime will likely remain a challenge, this review provides recommendations for future work to advance towards a universal understanding of cybercrime phenomena as well as a robust and comprehensive classification system

    The Cartilage-Sparing Versus the Cartilage-Cutting Technique: A Retrospective Quality Control Comparison of the Francesconi and Converse Otoplasties

    Get PDF
    From a total of 281 patients with protruding ears who underwent a bilateral otoplasty between 1990 and 2001, a group of 28 (10%) was selected for a retrospective quality control study. The goal was to compare two methods of otoplasty, the Francesconi, a cartilage-sparing technique, and the Converse, a cartilage-cutting technique, in terms of objectively measurable and subjectively discernable differences in results. Objective parameters included measurement of the three cephaloauricular distances and the conchoscapal angle. An independent plastic surgeon performed the evaluation by means of a systematic evaluation system for rating cosmetic surgical procedures and a 5-point visual analog scale for rating satisfaction. The patients' subjective rate of satisfaction also was investigated using the 5-point scale. The mean medial and inferior cephaloauricular distances were significantly smaller in the Francesconi group. The concoscaphal angle was 90°, or less in all the patients of the Francesconi group, but more than 90° in eight patients (57%) of the Converse group (p = 0.041). Accordingly, the independent surgeon found adequate correction of protrusion in 86% of the Francesconi group and 50% of the Converse group (p = 0.050). His satisfaction rate was significantly in favor of the Francesconi technique (p = 0.006). Not unexpectedly, the patients' satisfaction rate was comparably high in both groups, and there was no statistical difference between them. In conclusion, the quality control led to a clear preference of the Francesconi over the Converse otoplasty. In addition, the assessment of the postoperative results with the systematic evaluation system offered an excellent information base by which to judge the results of otoplasty. Consequent use of this evaluation system will lead to progress in the surgical procedur

    High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12

    Full text link
    The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12 and NaFe4Sb12 is studied by point-contact Andreev reflection using superconducting Nb and Pb tips. From these measurements an intrinsic transport spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is inferred which establishes these materials as a new class of highly spin polarized ferromagnets. The results are in accord with band structure calculations within the local spin density approximation (LSDA) that predict nearly 100% spin polarization in the density of states. We discuss the impact of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi

    THE INFLUENCE OF SALT MARSH FUCOID ALGAE (ECADS) ON SEDIMENT DYNAMICS OF NORTHWEST ATLANTIC MARSHES

    Get PDF
    Resilience is currently a key theme within salt marsh ecological studies. Understanding the factors that affect salt marsh accretion and elevation gains are of paramount importance if management of these ecosystems is to be successful under increasing synergistic stresses of storm surge, inundation period, and eutrophication. We present the results of salt marsh fucoid algae (ecads) removal experiments on Spartina alterniflora abundance, production and decomposition and the sedimentary dynamics of two marshes on Cape Cod, Massachusetts. The presence of the thick layer of marsh fucoids had a significant and positive influence on sediment deposition, accretion, concentration of water column particulates, while it inhibited water flow. Decomposition rates of Spartina alterniflora in the field were significantly higher under the fucoid macroalgae layer, and, in lab experiments, S. alterniflora seedlings added more leaves when the marsh fucoids were present. In contrast, fucoids caused a significant decrease in S. alterniflora seedlings’ survival in the field. We found that marsh fucoids are stable despite not being attached to any substrate, and field surveys revealed a relatively widespread, but not ubiquitous, distribution along outer Cape Cod. Salt marsh fucoid algae directly and substantially contribute to salt marsh sediment elevation gain, yet their potential inhibitory effects on colonizing S. alterniflora may counteract some of their overall contributions to salt marsh persistence and resilience

    Diffusion on a hypercubic lattice with pinning potential: exact results for the error-catastrophe problem in biological evolution

    Full text link
    In the theoretical biology framework one fundamental problem is the so-called error catastrophe in Darwinian evolution models. We reexamine Eigen's fundamental equations by mapping them into a polymer depinning transition problem in a ``genotype'' space represented by a unitary hypercubic lattice. The exact solution of the model shows that error catastrophe arises as a direct consequence of the equations involved and confirms some previous qualitative results. The physically relevant consequence is that such equations are not adequate to properly describe evolution of complex life on the Earth.Comment: 10 pages in LaTeX. Figures are available from the authors. [email protected] (e-mail address

    Local tunneling spectroscopy as signatures of the Fulde-Ferrell-Larkin-Ovchinnikov state in s- and d-wave Superconductors

    Get PDF
    The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states for two-dimensional s- and d-wave superconductors (s- and d-SC) are self-consistently studied under an in-plane magnetic field. While the stripe solution of the order parameter (OP) is found to have lower free energy in s-SC, a square lattice solution appears to be energetically more favorable in the case of d-SC. At certain symmetric sites, we find that the features in the local density of states (LDOS) can be ascribed to two types of bound states. We also show that the LDOS maps for d-SC exhibit bias-energy-dependent checkerboard patterns. These characteristics can serve as signatures of the FFLO states.Comment: 5 pages, 5 figures Type and grammaratic errors corrected. Last figure replaced by colored one. To appear in PR

    Elemental analysis of contemporary dental materials regarding potential beryllium content

    Get PDF
    Exposure to beryllium (Be) can lead to lung pathologies, such as chronic beryllium disease (CBD). This occupational illness has been more prevalent among dental technicians compared to the non-exposed population. Although most manufacturers state that dental materials are Be-free, this prevalence raises the question of whether the materials are completely devoid of Be-traces. Thus, the objective of the present study was to analyze the elemental composition, with emphasis on Be, of a wide range of commercially available dental materials frequently used by dental laboratories. Samples of 32 different materials were collected and analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray fluorescence spectroscopy. The results showed that the Be content was below the limit of quantification in all included samples (< 0.00005 mass-%). Therefore, it can be concluded that possible traces of Be were below clinical relevance in dental materials. Exposure of dental technicians to alternative Be sources should be further evaluated
    corecore