253 research outputs found
Interactions between individual plant species and soil nutrient status in Shortgrass Steppe
Includes bibliographical references (pages 1131-1133).The effect of plant community structure on nutrient cycling is fundamental to our understanding of ecosystem function. We examined the importance of plant species and plant cover (i.e., plant covered microsites vs. bare soil) on nutrient cycling in shortgrass steppe of northeastern Colorado. We tested the effects of both plant species and cover on soils in an area of undisturbed shortgrass steppe and an area that had undergone nitrogen and water additions from 1971 to 1974, resulting in significant shifts in plant species composition. Soils under plants had consistently higher C and N mineralization rates and, in some cases, higher total and microbial C and N levels than soils without plant cover. Four native grasses, one sedge, and one shrub differed from one another in the quantity and quality of above- and belowground biomass but differences among the six species in soil nutrient cycling under their canopies were slight. However, soils under bunchgrasses tended to have higher C mineralization and microbial biomass C than soil under the rhizomatous grass, Agropyron smithii. Also, the one introduced annual in the study, Kochia scoparia, had soils with less plant-induced heterogeneity and higher rates of C and N mineralization as well as higher levels of microbial biomass C than soils associated with the other species. This species was abundant only on plots that had received water and nitrogen for a 4-yr period that ended 20 year ago, where it has persisted in the absence of resource additions for 20 yr, suggesting a positive feedback between plant persistence and soil nutrient status. Plant cover patterns had larger effects on ecosystem scale estimates of soil properties than the attributes of a particular plant species. This result may be due to the semiarid nature of this grassland in which plant cover is discontinuous and decomposition and nutrient availability are primarily limited by water, not by plant species-mediated characteristics such as litter quality. That local plant-induced patterns in soil properties significantly affected ecosystem scale estimates of these properties indicates that consideration of structural attributes, particularly plant cover patterns, is critical to estimates of ecosystem function in shortgrass steppe
DAYCENT Simulations to Test the Influence of Fire Regime and Fire Suppression on Trace Gas Fluxes and Nitrogen Biogeochemistry of Colorado Forests
Biological activity and the physical environment regulate greenhouse gas fluxes (CH4, N2O and NO) from upland soils. Wildfires are known to alter these factors such that we collected daily weather records, fire return intervals, or specific fire years, and soil data of four specific sites along the Colorado Front Range. These data were used as primary inputs into DAYCENT. In this paper we test the ability of DAYCENT to simulate four forested sites in this area and to address two objectives: (1) to evaluate the short-term influence of fire on trace gas fluxes from burned landscapes; and (2) to compare trace gas fluxes among locations and between pre-/post- fire suppression. The model simulations indicate that CH4 oxidation is relatively unaffected by wildfire. In contrast, gross nitrification rates were reduced by 13.5–37.1% during the fire suppression period. At two of the sites, we calculated increases in gross nitrification rates (\u3e100%), and N2O and NO fluxes during the year of fire relative to the year before a fire. Simulated fire suppression exhibited decreased gross nitrification rates presumably as nitrogen is immobilized. This finding concurs with other studies that highlight the importance of forest fires to maintain soil nitrogen availability
Soil organic matter recovery in semiarid grasslands: implications for the Conservation Reserve Program
Includes bibliographical references (pages 799-801).Although the effects of cultivation on soil organic matter and nutrient supply capacity are well understood, relatively little work has been done on the long-term recovery of soils from cultivation. We sampled soils from 12 locations within the Pawnee National Grasslands of northeastern Colorado, each having native fields and fields that were historically cultivated but abandoned 50 years ago. We also sampled fields that had been cultivated for at least 50 years at 5 of these locations. Our results demonstrated that soil organic matter, silt content, microbial biomass, potentially mineralizable N, and potentially respirable C were significantly lower on cultivated fields than on native fields. Both cultivated and abandoned fields also had significantly lower soil organic matter and silt contents than native fields. Abandoned fields, however, were not significantly different from native fields with respect to microbial biomass, potentially mineralizable N, or respirable C. In addition, we found that the characteristic small-scale heterogeneity of the shortgrass steppe associated with individuals of the dominant plant, Bouteloua gracilis, had recovered on abandoned fields. Soil beneath plant canopies had an average of 200 g/m2 more C than between-plant locations. We suggest that 50 years is an adequate time for recovery of active soil organic matter and nutrient availability, but recovery of total soil organic matter pools is a much slower process. Plant population dynamics may play an important role in the recovery of shortgrass steppe ecosystems from disturbance, such that establishment of perennial grasses determines the rate of organic matter recovery
Methane production and consumption in grassland and boreal ecosystems
The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation
Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale
We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term Intersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these models changed over short to long time periods. Six genera of foliar and three genera of root litters were studied with a 10-fold range in the ratio of acid unhydrolyzable fraction (AUF, or ‘lignin’) to N. Litter was incubated at 27 field sites across numerous terrestrial biomes including arctic and alpine tundra, temperate and tropical forests, grasslands and warm deserts. We used three separate mathematical models of first-order (exponential) decomposition, emphasizing either the first year or the entire decade. One model included the proportion of relatively stable material as an asymptote. For short-term (first-year) decomposition, nonlinear regressions of exponential or power function form were obtained with r 2 values of 0.82 and 0.64 for foliar and fine-root litter, respectively, across all biomes included. AUF and AUF : N ratio were the most explanative litter quality variables, while the combined temperature-moisture terms AET (actual evapotranspiration) and CDI (climatic decomposition index) were best for climatic effects. Regressions contained some systematic bias for grasslands and arctic and boreal sites, but not for humid tropical forests or temperate deciduous and coniferous forests. The ability of the regression approach to fit climate-driven decomposition models of the 10-year field results was dramatically reduced from the ability to capture drivers of short-term decomposition. Future work will require conceptual and methodological improvements to investigate processes controlling decadal-scale litter decomposition, including the formation of a relatively stable fraction and its subsequent decomposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78615/1/j.1365-2486.2009.02086.x.pd
Grazing and No-Till Cropping Impacts on Nitrogen Retention in Dryland Agroecosystems
As the world\u27s population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of \u3e18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining \u3e90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses
Multi-Messenger Gravitational Wave Searches with Pulsar Timing Arrays: Application to 3C66B Using the NANOGrav 11-year Data Set
When galaxies merge, the supermassive black holes in their centers may form
binaries and, during the process of merger, emit low-frequency gravitational
radiation in the process. In this paper we consider the galaxy 3C66B, which was
used as the target of the first multi-messenger search for gravitational waves.
Due to the observed periodicities present in the photometric and astrometric
data of the source of the source, it has been theorized to contain a
supermassive black hole binary. Its apparent 1.05-year orbital period would
place the gravitational wave emission directly in the pulsar timing band. Since
the first pulsar timing array study of 3C66B, revised models of the source have
been published, and timing array sensitivities and techniques have improved
dramatically. With these advances, we further constrain the chirp mass of the
potential supermassive black hole binary in 3C66B to less than using data from the NANOGrav 11-year data set. This
upper limit provides a factor of 1.6 improvement over previous limits, and a
factor of 4.3 over the first search done. Nevertheless, the most recent orbital
model for the source is still consistent with our limit from pulsar timing
array data. In addition, we are able to quantify the improvement made by the
inclusion of source properties gleaned from electromagnetic data to `blind'
pulsar timing array searches. With these methods, it is apparent that it is not
necessary to obtain exact a priori knowledge of the period of a binary to gain
meaningful astrophysical inferences.Comment: 14 pages, 6 figures. Accepted by Ap
Long-term ecological research on Colorado Shortgrass Steppe
The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012
VAST: An ASKAP Survey for Variables and Slow Transients
The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an
unprecedented opportunity to investigate the transient sky at radio
wavelengths. In this paper we present VAST, an ASKAP survey for Variables and
Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP
to enable the discovery and investigation of variable and transient phenomena
from the local to the cosmological, including flare stars, intermittent
pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar
scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In
addition, it will allow us to probe unexplored regions of parameter space where
new classes of transient sources may be detected. In this paper we review the
known radio transient and variable populations and the current results from
blind radio surveys. We outline a comprehensive program based on a multi-tiered
survey strategy to characterise the radio transient sky through detection and
monitoring of transient and variable sources on the ASKAP imaging timescales of
five seconds and greater. We also present an analysis of the expected source
populations that we will be able to detect with VAST.Comment: 29 pages, 8 figures. Submitted for publication in Pub. Astron. Soc.
Australi
Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants
Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy
- …