4,545 research outputs found

    AZD1775 Induces Toxicity Through Double-Stranded DNA Breaks Independently of Chemotherapeutic Agents in p53-Mutated Colorectal Cancer Cells

    Get PDF
    AZD1775 is a small molecule WEE1 inhibitor used in combination with DNA-damaging agents to cause premature mitosis and cell death in p53-mutated cancer cells. Here we sought to determine the mechanism of action of AZD1775 in combination with chemotherapeutic agents in light of recent findings that AZD1775 can cause double-stranded DNA (DS-DNA) breaks. AZD1775 significantly improved the cytotoxicity of 5-FU in a p53-mutated colorectal cancer cell line (HT29 cells), decreasing the IC50 from 9.3 μM to 3.5 μM. Flow cytometry showed a significant increase in the mitotic marker pHH3 (3.4% vs. 56.2%) and DS-DNA break marker γH2AX (5.1% vs. 50.7%) for combination therapy compared to 5-FU alone. Combination therapy also increased the amount of caspase-3 dependent apoptosis compared to 5-FU alone (4% vs. 13%). The addition of exogenous nucleosides to combination therapy significantly rescued the increased DS-DNA breaks and caspase-3 dependent apoptosis almost to the levels of 5-FU monotherapy. In conclusion, AZD1775 enhances 5-FU cytotoxicity through increased DS-DNA breaks, not premature mitosis, in p53-mutated colorectal cancer cells. This finding is important for designers of future clinical trials when considering the optimal timing and duration of AZD1775 treatment

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    OPA1 in Cardiovascular Health and Disease.

    Get PDF
    Mitochondria are known to play crucial roles in normal cellular physiology and in more recent years they have been implicated in a wide range of pathologies. Central to both these roles is their ability to alter their shape interchangeably between two different morphologies: an elongated interconnected network and a fragmented discrete phenotype - processes which are under the regulation of the mitochondrial fusion and fission proteins, respectively. In this review article, we focus on the mitochondrial fusion protein optic atrophy protein 1 (OPA1) in cardiovascular health and disease and we explore its role as a potential therapeutic target for treating cardiovascular and metabolic disease

    Coprecipitation of 14C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

    Get PDF
    This study investigated the simultaneous removal of Sr2+ and 14CO32- from an alkaline (pH >12) Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca2+:CO32- ratios ranged from 10:1 to 10:100 (mM: mM). Maximum removal of 14C and Sr2+ both occurred in the system containing 10 mM Ca2+ and 1 mM CO32- (99.7% and 98.6% removal, respectively). A kinetic model is provided that describes 14C and Sr removal in terms of mineral dissolution & precipitation reactions. The removal of 14C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of a calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the 14C back to solution. Sr2+ removal occurred as Ca2+ became depleted in solution and was not significantly affected by the recrystallization process. This reaction could form the basis for low cost remediation scheme for 90Sr and 14C in radioactively contaminated waters (<$0.25 reagent cost per m3 treated)

    Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction

    Get PDF
    Mitochondria alter their shape by undergoing cycles of fusion and fission. Changes in mitochondrial morphology impact on the cellular response to stress, and their interactions with other organelles such as the sarcoplasmic reticulum (SR). Inhibiting mitochondrial fission can protect the heart against acute ischemia/reperfusion (I/R) injury. However, the role of the mitochondrial fusion proteins, Mfn1 and Mfn2, in the response of the adult heart to acute I/R injury is not clear, and is investigated in this study. To determine the effect of combined Mfn1/Mfn2 ablation on the susceptibility to acute myocardial I/R injury, cardiac-specific ablation of both Mfn1 and Mfn2 (DKO) was initiated in mice aged 4-6 weeks, leading to knockout of both these proteins in 8-10-week-old animals. This resulted in fragmented mitochondria (electron microscopy), decreased mitochondrial respiratory function (respirometry), and impaired myocardial contractile function (echocardiography). In DKO mice subjected to in vivo regional myocardial ischemia (30 min) followed by 24 h reperfusion, myocardial infarct size (IS, expressed as a % of the area-at-risk) was reduced by 46% compared with wild-type (WT) hearts. In addition, mitochondria from DKO animals had decreased MPTP opening susceptibility (assessed by Ca(2+)-induced mitochondrial swelling), compared with WT hearts. Mfn2 is a key mediator of mitochondrial/SR tethering, and accordingly, the loss of Mfn2 in DKO hearts reduced the number of interactions measured between these organelles (quantified by proximal ligation assay), attenuated mitochondrial calcium overload (Rhod2 confocal microscopy), and decreased reactive oxygen species production (DCF confocal microscopy) in response to acute I/R injury. No differences in isolated mitochondrial ROS emissions (Amplex Red) were detected in response to Ca(2+) and Antimycin A, further implicating disruption of mitochondria/SR tethering as the protective mechanism. In summary, despite apparent mitochondrial dysfunction, hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction due to impaired mitochondria/SR tethering

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    A Universal Model of Global Civil Unrest

    Get PDF
    Civil unrest is a powerful form of collective human dynamics, which has led to major transitions of societies in modern history. The study of collective human dynamics, including collective aggression, has been the focus of much discussion in the context of modeling and identification of universal patterns of behavior. In contrast, the possibility that civil unrest activities, across countries and over long time periods, are governed by universal mechanisms has not been explored. Here, we analyze records of civil unrest of 170 countries during the period 1919-2008. We demonstrate that the distributions of the number of unrest events per year are robustly reproduced by a nonlinear, spatially extended dynamical model, which reflects the spread of civil disorder between geographic regions connected through social and communication networks. The results also expose the similarity between global social instability and the dynamics of natural hazards and epidemics.Comment: 8 pages, 3 figure

    Story in health and social care

    Get PDF
    This paper offers a brief consideration of how narrative, in the form of people‟s own stories, potentially figures in health and social care provision as part of the impulse towards patient-centred care. The rise of the epistemological legitimacy of patients‟ stories is sketched here. The paper draws upon relevant literature and original writing to consider the ways in which stories can mislead as well as illuminate the process of making individual treatment care plans

    Enhanced Crystallographic incorporation of Strontium(II) ions to Calcite via Preferential Adsorption at Obtuse growth steps

    Get PDF
    Sr-containing calcium carbonates were precipitated from solutions containing Ca(OH)₂, SrCl₂ and Na₂CO₃ in a reactor where constant solution composition was maintained. The total concentration of divalent ions was same in all experiments, but the Sr/Ca ratio was varied between 0.002 and 0.86, and the pH value was between 12.02 and 12.25. All solutions were oversaturated with respect to calcite (SIcalcite = 1.2-1.5). Calcite was the only product formed at low Sr/Ca ratios, but at Sr/Ca ≥ 0.45 strontianite was detected in some systems. Sr-rich precipitate was observed in both a surface layer on (6.9-6 µm) rhombic calcite seed crystals and as smaller (> 3.64-1.96 µm) calcite crystals that were elongated along their C-axis. The degree of crystal elongation increased with the Sr/Ca ratio in those crystals. Precipitates recovered from low Sr/Ca ratio experiments exhibited an XRD spectrum identical to that of rhombic calcite, however the peaks attributed to Sr-containing calcite shifted progressively to lower 2θ values with increasing solution Sr/Ca ratio, indicating increased lattice volume. Sr K-edge EXAFS analysis of the precipitates showed that the shift in morphology and lattice volume is accompanied by a change in the local coordination of Sr²⁺ in calcite. The Sr-O bond lengths were similar to the Ca-O bond lengths in calcite, but Sr-O coordination increased from 6 fold in crystals containing 0.21 Wt. % Sr, to 8 fold in crystals containing 9.47 Wt. % Sr, and the Sr-Ca coordination decreased from 6 and 6 (for the first and second Sr-Ca shells respectively) to 4 and 1. It is suggested that Sr²⁺ undergoes preferential incorporation at obtuse (+) growth sites on the calcite surface due to its large ionic radius (1.13 Å), and this increases the growth rate parallel to the C-axis, resulting in the observed elongation in this direction

    The Molecular Basis for Antigenic Drift of Human A/H2N2 Influenza Viruses.

    Get PDF
    Influenza A/H2N2 viruses caused a pandemic in 1957 and continued to circulate in humans until 1968. The antigenic evolution of A/H2N2 viruses over time and the amino acid substitutions responsible for this antigenic evolution are not known. Here, the antigenic diversity of a representative set of human A/H2N2 viruses isolated between 1957 and 1968 was characterized. The antigenic change of influenza A/H2N2 viruses during the 12 years that this virus circulated was modest. Two amino acid substitutions, T128D and N139K, located in the head domain of the H2 hemagglutinin (HA) molecule, were identified as important determinants of antigenic change during A/H2N2 virus evolution. The rate of A/H2N2 virus antigenic evolution during the 12-year period after introduction in humans was half that of A/H3N2 viruses, despite similar rates of genetic change.IMPORTANCE While influenza A viruses of subtype H2N2 were at the origin of the Asian influenza pandemic, little is known about the antigenic changes that occurred during the twelve years of circulation in humans, the role of preexisting immunity, and the evolutionary rates of the virus. In this study, the antigenic map derived from hemagglutination inhibition (HI) titers of cell-cultured virus isolates and ferret postinfection sera displayed a directional evolution of viruses away from earlier isolates. Furthermore, individual mutations in close proximity to the receptor-binding site of the HA molecule determined the antigenic reactivity, confirming that individual amino acid substitutions in A/H2N2 viruses can confer major antigenic changes. This study adds to our understanding of virus evolution with respect to antigenic variability, rates of virus evolution, and potential escape mutants of A/H2N2
    corecore