1,022 research outputs found

    Forage sorghum, 1981

    Get PDF
    "February 1982.""The Author: Harry C. Minor is an Associate Professor of Agronomy and State Extension Specialist, Carl G. Morris is a Senior Research Specialist, Richard E. Mattis is an Instructor of Agronomy and Assistant Superintendent, Bruce A. Burdick and Howard L. Mason are Research Specialists.

    Generation of coherent terahertz pulses in Ruby at room temperature

    Get PDF
    We have shown that a coherently driven solid state medium can potentially produce strong controllable short pulses of THz radiation. The high efficiency of the technique is based on excitation of maximal THz coherence by applying resonant optical pulses to the medium. The excited coherence in the medium is connected to macroscopic polarization coupled to THz radiation. We have performed detailed simulations by solving the coupled density matrix and Maxwell equations. By using a simple VV-type energy scheme for ruby, we have demonstrated that the energy of generated THz pulses ranges from hundreds of pico-Joules to nano-Joules at room temperature and micro-Joules at liquid helium temperature, with pulse durations from picoseconds to tens of nanoseconds. We have also suggested a coherent ruby source that lases on two optical wavelengths and simultaneously generates THz radiation. We discussed also possibilities of extension of the technique to different solid-state materials

    MATRICS cognitive consensus battery (MCCB) performance in children, adolescents, and young adults

    Get PDF
    Background: Neurodevelopmental models of schizophrenia suggest that cognitive deficits may be observed during childhood and adolescence, long before the onset of psychotic symptoms. Elucidating the trajectory of normal cognitive development during childhood and adolescence may therefore provide a basis for identifying specific abnormalities related to the development of schizophrenia. The MATRICS Consensus Cognitive Battery (MCCB), which was designed for use in clinical trials targeting cognitive deficits most common in schizophrenia, may provide a mechanism to understand this trajectory. To date, however, there is no performance data for the MCCB in healthy children and adolescents. The present study sought to establish performance data for the MCCB in healthy children, adolescents, and young adults. Methods: The MCCB was administered to a community sample of 190 healthy subjects between the ages of 8 and 23 years. All MCCB domain scores were converted to T-scores using sample means and standard deviations and were compared for significant performance differences between sex and age strata. Results: Analyses revealed age effects following quadratic trends in all MCCB domains, which is consistent with research showing a leveling off of childhood cognitive improvement upon approaching late adolescence. Sex effects after controlling for age only presented for one MCCB domain, with males exhibiting well-known spatial reasoning advantages. Conclusions: Utilizing this performance data may aid future research seeking to elucidate specific deficits that may be predictive of later development of SZ. (C) 2013 Elsevier B.V. All rights reserved

    Recording advances for neural prosthetics

    Get PDF
    An important challenge for neural prosthetics research is to record from populations of neurons over long periods of time, ideally for the lifetime of the patient. Two new advances toward this goal are described, the use of local field potentials (LFPs) and autonomously positioned recording electrodes. LFPs are the composite extracellular potential field from several hundreds of neurons around the electrode tip. LFP recordings can be maintained for longer periods of time than single cell recordings. We find that similar information can be decoded from LFP and spike recordings, with better performance for state decodes with LFPs and, depending on the area, equivalent or slightly less than equivalent performance for signaling the direction of planned movements. Movable electrodes in microdrives can be adjusted in the tissue to optimize recordings, but their movements must be automated to be a practical benefit to patients. We have developed automation algorithms and a meso-scale autonomous electrode testbed, and demonstrated that this system can autonomously isolate and maintain the recorded signal quality of single cells in the cortex of awake, behaving monkeys. These two advances show promise for developing very long term recording for neural prosthetic applications

    Different views on Digital Scholarship: separate worlds or cohesive research field?

    Get PDF
    This article presents a systematic review of the literature on Digital Scholarship, aimed at better understanding the collocation of this research area at the crossroad of several disciplines and strands of research. The authors analysed 45 articlesin order to draw a picture of research in this area. In the first phase, the articles were classified, and relevant quantitative and qualitative data were analysed. Results showed that three clear strands of research do exist: Digital Libraries, Networked Scholarship and Digital Humanities. Moreover, researchers involved in this research area tackle the problems related to technological uptake in the scholar's profession from different points of view, and define the field in different – often complementary – ways, thus generating the perception of a research area still in need of a unifying vision. In the second phase, authors searched for evidence of the disciplinary contributions and interdisciplinary cohesion of research carried out in this area through the use of bibliometric maps. Results suggest that the area of Digital Scholarship, still in its infancy, is advancing in a rather fragmented way, shaping itself around the above-mentioned strands, each with its own research agenda. However, results from the cross-citation analysis suggest that the Networked Scholarship strand is more cohesive than the others in terms of cross-citations

    High resolution infrared absorption spectra, crystal field, and relaxation processes in CsCdBr_3:Pr^3+

    Full text link
    High resolution low-temperature absorption spectra of 0.2% Pr^3+ doped CsCdBr_3 were measured in the spectral region 2000--7000 cm-1. Positions and widths of the crystal field levels within the 3H5, 3H4, 3F2, and 3F3 multiplets of the Pr^3+ main center have been determined. Hyperfine structure of several spectral lines has been found. Crystal field calculations were carried out in the framework of the semiphenomenological exchange charge model (ECM). Parameters of the ECM were determined by fitting to the measured total splittings of the 3H4 and 3H6 multiplets and to the observed in this work hyperfine splittings of the crystal field levels. One- and two-phonon relaxation rates were calculated using the phonon Green's functions of the perfect (CsCdBr_3) and locally perturbed (impurity dimer centers in CsCdBr_3:Pr^3+) crystal lattice. Comparison with the measured linewidths confirmed an essential redistribution of the phonon density of states in CsCdBr_3 crystals doped with rare-earth ions.Comment: 16 pages, 5 tables, 3 figure

    Pollen-Mediated Gene Flow from Genetically Modified Herbicide Resistant Creeping Bentgrass

    Get PDF
    Approximately 162 ha of multiple experimental fields of creeping bentgrass (Agrostis stolonifera L.) genetically modified for resistance to Roundup ®herbicide, were planted in central Oregon in 2002. When the fields flowered for the first time in the summer of 2003, a unique opportunity was presented to evaluate methods to monitor potential pollen-mediated gene flow from the experimental GM crop fields to compatible sentinel and resident plants that were located in surrounding, primarily non-agronomic areas
    corecore