1,862 research outputs found

    Meter for use in detecting tension in straps having predetermined elastic characteristics

    Get PDF
    A meter for detecting tension in elastic bodies, especially in fabric straps employed as tie down straps for stowed objects is presented. The meter is characterized by a pair of elongated arms coupled together for pivotal motion about a common axis in a common plane and a strap receiver located at adjacent ends of the arms for receiving and securing adjacent portions of the strap. The receivers are supported by the arms for motion along intersecting arcs, and motion detection means is located at the opposite ends of the arms for detecting the magnitude of the motion imparted to the receivers as the strap is placed in tension

    Germanium Detector with Internal Amplification for Investigation of Rare Processes

    Get PDF
    Device of new type is suggested - germanium detector with internal amplification. Such detector having effective threshold about 10 eV opens up fresh opportunity for investigation of dark matter, measurement of neutrino magnetic moment, of neutrino coherent scattering at nuclei and for study of solar neutrino problem. Construction of germanium detector with internal amplification and perspectives of its use are described.Comment: 13 pages, latex, 3 figures, report at NANP-99, International Conference on Non-Accelerator Physics, Dubna, Russia, June 29- July 3, 1999. To be published in the Proceeding

    Charge-based silicon quantum computer architectures using controlled single-ion implantation

    Get PDF
    We report a nanofabrication, control and measurement scheme for charge-based silicon quantum computing which utilises a new technique of controlled single ion implantation. Each qubit consists of two phosphorus dopant atoms ~50 nm apart, one of which is singly ionized. The lowest two energy states of the remaining electron form the logical states. Surface electrodes control the qubit using voltage pulses and dual single electron transistors operating near the quantum limit provide fast readout with spurious signal rejection. A low energy (keV) ion beam is used to implant the phosphorus atoms in high-purity Si. Single atom control during the implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure, while positional accuracy is provided by a nanomachined resist mask. We describe a construction process for implanted single atom and atom cluster devices with all components registered to better than 20 nm, together with electrical characterisation of the readout circuitry. We also discuss universal one- and two-qubit gate operations for this architecture, providing a possible path towards quantum computing in silicon.Comment: 9 pages, 5 figure

    Structure factor of polymers interacting via a short range repulsive potential: application to hairy wormlike micelles

    Full text link
    We use the Random Phase Approximation (RPA) to compute the structure factor, S(q), of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of semi-dilute solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions

    Doped Stripes in Models for the Cuprates Emerging from the One-hole Properties of the Insulator

    Full text link
    The extended and standard t-J models are computationally studied on ladders and planes, with emphasis on the small J/t region. At couplings compatible with photoemission results for undoped cuprates, half-doped stripes separating π\pi-shifted antiferromagnetic (AF) domains are found, as in Tranquada's interpretation of neutron experiments. Our main result is that the elementary stripe `"building-block" resembles the properties of oneone hole at small J/t, with robust AF correlations across-the-hole induced by the local tendency of the charge to separate from the spin (G. Martins {\it et al.}, Phys. Rev. B{\bf 60}, R3716 (1999)). This suggests that the seed of half-doped stripes already exists in the unusual properties of the insulating parent compound.Comment: 4 pages, LateX, 4 figures, to appear on Phys. Rev. Let

    Magnetic Domains and Stripes in the Spin-Fermion Model for Cuprates

    Full text link
    Monte Carlo simulations applied to the Spin-Fermion model for cuprates show the existence of antiferromagnetic spin domains and charge stripes upon doping. The stripes are partially filled, with a filling of approximately 1/2 hole per site, and they separate spin domains with a π\pi phase shift among them. The stripes observed run either along the x or y axes and they are separated by a large energy barrier. No special boundary conditions or external fields are needed to stabilize these structures at low temperatures. When magnetic incommensurate peaks are observed at momentum π(1,1δ)\pi(1,1-\delta) and symmetrical points, charge incommensurate peaks appear at (0,2δ)(0,2 \delta) and symmetrical points, as experimentally observed. The strong charge fluctuations responsible for the formation of the stripes also induce a pseudogap in the density of states.Comment: Four pages with four figures embedded in tex

    Indications of Spin-Charge Separation at Short Distance and Stripe Formation in the Extended t-J Model on Ladders and Planes

    Full text link
    The recently discussed tendency of holes to generate nontrivial spin environments in the extended two-dimensional t-J model (G. Martins, R. Eder, and E. Dagotto, Phys. Rev. B{\bf 60}, R3716 (1999)) is here investigated using computational techniques applied to ladders with several number of legs. This tendency is studied also with the help of analytic spin-polaron approaches directly in two dimensions. Our main result is that the presence of robust antiferromagnetic correlations between spins located at both sides of a hole either along the x or y axis, observed before numerically on square clusters, is also found using ladders, as well as applying techniques based on a string-basis expansion. This so-called "across-the-hole" nontrivial structure exists even in the two-leg spin-gapped ladder system, and leads to an effective reduction in dimensionality and spin-charge separation at short-distances, with a concomitant drastic reduction in the quasiparticle (QP) weight Z. In general, it appears that holes tend to induce one-dimensional-like spin arrangements to improve their mobility. Using ladders it is also shown that the very small J/t\sim0.1 regime of the standard t-J model may be more realistic than anticipated in previous investigations, since such regime shares several properties with those found in the extended model at realistic couplings. Another goal of the present article is to provide additional information on the recently discussed tendencies to stripe formation and spin incommensurability reported for the extended t-J model.Comment: 14 pages, 21 figures, LateX, submited to Phys. Rev.

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method
    corecore