82 research outputs found

    Dynamical Topological Quantum Phase Transitions for Mixed States

    Get PDF
    We introduce and study dynamical probes of band structure topology in the post-quench time-evolution from mixed initial states of quantum many-body systems. Our construction generalizes the notion of dynamical quantum phase transitions (DQPTs), a real-time counterpart of conventional equilibrium phase transitions in quantum dynamics, to finite temperatures and generalized Gibbs ensembles. The non-analytical signatures hallmarking these mixed state DQPTs are found to be characterized by observable phase singularities manifesting in the dynamical formation of vortex-antivortex pairs in the interferometric phase of the density matrix. Studying quenches in Chern insulators, we find that changes in the topological properties of the Hamiltonian can be identified in this scenario, without ever preparing a topologically non-trivial or low-temperature initial state. Our observations are of immediate relevance for current experiments aimed at realizing topological phases in ultracold atomic gases.Comment: 4 pages, 3 figures, version close to publishe

    Topological insulators with arbitrarily tunable entanglement

    Get PDF
    We elucidate how Chern and topological insulators fulfill an area law for the entanglement entropy. By explicit construction of a family of lattice Hamiltonians, we are able to demonstrate that the area law contribution can be tuned to an arbitrarily small value, but is topologically protected from vanishing exactly. We prove this by introducing novel methods to bound entanglement entropies from correlations using perturbation bounds, drawing intuition from ideas of quantum information theory. This rigorous approach is complemented by an intuitive understanding in terms of entanglement edge states. These insights have a number of important consequences: The area law has no universal component, no matter how small, and the entanglement scaling cannot be used as a faithful diagnostic of topological insulators. This holds for all Renyi entropies which uniquely determine the entanglement spectrum which is hence also non-universal. The existence of arbitrarily weakly entangled topological insulators furthermore opens up possibilities of devising correlated topological phases in which the entanglement entropy is small and which are thereby numerically tractable, specifically in tensor network approaches.Comment: 9 pages, 3 figures, final versio

    Synthetic Helical Liquids with Ultracold Atoms in Optical Lattices

    Full text link
    We discuss a platform for the synthetic realization of key physical properties of helical Tomonaga Luttinger liquids (HTLLs) with ultracold fermionic atoms in one-dimensional optical lattices. The HTLL is a strongly correlated metallic state where spin polarization and propagation direction of the itinerant particles are locked to each other. We propose an unconventional one-dimensional Fermi-Hubbard model which, at quarter filling, resembles the HTLL in the long wavelength limit, as we demonstrate with a combination of analytical (bosonization) and numerical (density matrix renormalization group) methods. An experimentally feasible scheme is provided for the realization of this model with ultracold fermionic atoms in optical lattices. Finally, we discuss how the robustness of the HTLL against back-scattering and imperfections, well known from its realization at the edge of two-dimensional topological insulators, is reflected in the synthetic one-dimensional scenario proposed here

    Symmetry-protected nodal phases in non-Hermitian systems

    Full text link
    Non-Hermitian (NH) Hamiltonians have become an important asset for the effective description of various physical systems that are subject to dissipation. Motivated by recent experimental progress on realizing the NH counterparts of gapless phases such as Weyl semimetals, here we investigate how NH symmetries affect the occurrence of exceptional points (EPs), that generalize the notion of nodal points in the spectrum beyond the Hermitian realm. Remarkably, we find that the dimension of the manifold of EPs is generically increased by one as compared to the case without symmetry. This leads to nodal surfaces formed by EPs that are stable as long as a protecting symmetry is preserved, and that are connected by open Fermi volumes. We illustrate our findings with analytically solvable two-band lattice models in one and two spatial dimensions, and show how they are readily generalized to generic NH crystalline systems.Comment: Editors' Suggestio

    Renormalization group approach for the scattering off a single Rashba impurity in a helical liquid

    Get PDF
    The occurrence of two-particle inelastic backscattering has been conjectured in helical edge states of topological insulators and is expected to alter transport. In this Letter, by using a renormalization group approach, we provide a microscopic derivation of this process, in the presence of a time-reversal invariant Rashba impurity potential. Unlike previous approaches to the problem, we are able to prove that such an effect only occurs in the presence of electron-electron interactions. Furthermore, we find that the linear conductance as a function of temperature exhibits a crossover between two scaling behaviors: T4KT^{4K} for K>1/2K>1/2 and T8K−2T^{8K-2} for K<1/2K<1/2, with KK the Luttinger parameter.Comment: 4 pages, 2 figures. Corresponds to published versio

    Symmetry protected exceptional points of interacting fermions

    Get PDF
    Non-Hermitian quantum systems can exhibit spectral degeneracies known as exceptional points, where two or more eigenvectors coalesce, leading to a nondiagonalizable Jordan block. It is known that symmetries can enhance the abundance of exceptional points in noninteracting systems. Here we investigate the fate of such symmetry protected exceptional points in the presence of a symmetry preserving interaction between fermions and find that (i) exceptional points are stable in the presence of the interaction. Their propagation through the parameter space leads to the formation of characteristic exceptional "fans." In addition, (ii) we identify a new source for exceptional points which are only present due to the interaction. These points emerge from diagonalizable degeneracies in the noninteracting case. Beyond their creation and stability, (iii) we also find that exceptional points can annihilate each other if they meet in parameter space with compatible many-body states forming a third order exceptional point at the endpoint. These phenomena are well captured by an "exceptional perturbation theory" starting from a noninteracting Hamiltonian
    • …
    corecore