75 research outputs found
A simulation study comparing aberration detection algorithms for syndromic surveillance
BACKGROUND: The usefulness of syndromic surveillance for early outbreak detection depends in part on effective statistical aberration detection. However, few published studies have compared different detection algorithms on identical data. In the largest simulation study conducted to date, we compared the performance of six aberration detection algorithms on simulated outbreaks superimposed on authentic syndromic surveillance data. METHODS: We compared three control-chart-based statistics, two exponential weighted moving averages, and a generalized linear model. We simulated 310 unique outbreak signals, and added these to actual daily counts of four syndromes monitored by Public Health – Seattle and King County's syndromic surveillance system. We compared the sensitivity of the six algorithms at detecting these simulated outbreaks at a fixed alert rate of 0.01. RESULTS: Stratified by baseline or by outbreak distribution, duration, or size, the generalized linear model was more sensitive than the other algorithms and detected 54% (95% CI = 52%–56%) of the simulated epidemics when run at an alert rate of 0.01. However, all of the algorithms had poor sensitivity, particularly for outbreaks that did not begin with a surge of cases. CONCLUSION: When tested on county-level data aggregated across age groups, these algorithms often did not perform well in detecting signals other than large, rapid increases in case counts relative to baseline levels
Approaches to the evaluation of outbreak detection methods
BACKGROUND: An increasing number of methods are being developed for the early detection of infectious disease outbreaks which could be naturally occurring or as a result of bioterrorism; however, no standardised framework for examining the usefulness of various outbreak detection methods exists. To promote comparability between studies, it is essential that standardised methods are developed for the evaluation of outbreak detection methods. METHODS: This analysis aims to review approaches used to evaluate outbreak detection methods and provide a conceptual framework upon which recommendations for standardised evaluation methods can be based. We reviewed the recently published literature for reports which evaluated methods for the detection of infectious disease outbreaks in public health surveillance data. Evaluation methods identified in the recent literature were categorised according to the presence of common features to provide a conceptual basis within which to understand current approaches to evaluation. RESULTS: There was considerable variation in the approaches used for the evaluation of methods for the detection of outbreaks in public health surveillance data, and appeared to be no single approach of choice. Four main approaches were used to evaluate performance, and these were labelled the Descriptive, Derived, Epidemiological and Simulation approaches. Based on the approaches identified, we propose a basic framework for evaluation and recommend the use of multiple approaches to evaluation to enable a comprehensive and contextualised description of outbreak detection performance. CONCLUSION: The varied nature of performance evaluation demonstrated in this review supports the need for further development of evaluation methods to improve comparability between studies. Our findings indicate that no single approach can fulfil all evaluation requirements. We propose that the cornerstone approaches to evaluation identified provide key contributions to support internal and external validity and comparability of study findings, and suggest these be incorporated into future recommendations for performance assessment
Infectious Disease Ontology
Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain
Proposal of a framework for evaluating military surveillance systems for early detection of outbreaks on duty areas
<p>Abstract</p> <p>Background</p> <p>In recent years a wide variety of epidemiological surveillance systems have been developed to provide early identification of outbreaks of infectious disease. Each system has had its own strengths and weaknesses. In 2002 a Working Group of the Centers for Disease Control and Prevention (CDC) produced a framework for evaluation, which proved suitable for many public health surveillance systems. However this did not easily adapt to the military setting, where by necessity a variety of different parameters are assessed, different constraints placed on the systems, and different objectives required. This paper describes a proposed framework for evaluation of military syndromic surveillance systems designed to detect outbreaks of disease on operational deployments.</p> <p>Methods</p> <p>The new framework described in this paper was developed from the cumulative experience of British and French military syndromic surveillance systems. The methods included a general assessment framework (CDC), followed by more specific methods of conducting evaluation. These included Knowledge/Attitude/Practice surveys (KAP surveys), technical audits, ergonomic studies, simulations and multi-national exercises. A variety of military constraints required integration into the evaluation. Examples of these include the variability of geographical conditions in the field, deployment to areas without prior knowledge of naturally-occurring disease patterns, the differences in field sanitation between locations and over the length of deployment, the mobility of military forces, turnover of personnel, continuity of surveillance across different locations, integration with surveillance systems from other nations working alongside each other, compatibility with non-medical information systems, and security.</p> <p>Results</p> <p>A framework for evaluation has been developed that can be used for military surveillance systems in a staged manner consisting of initial, intermediate and final evaluations. For each stage of the process parameters for assessment have been defined and methods identified.</p> <p>Conclusion</p> <p>The combined experiences of French and British syndromic surveillance systems developed for use in deployed military forces has allowed the development of a specific evaluation framework. The tool is suitable for use by all nations who wish to evaluate syndromic surveillance in their own military forces. It could also be useful for civilian mobile systems or for national security surveillance systems.</p
Using GIS to create synthetic disease outbreaks
BACKGROUND: The ability to detect disease outbreaks in their early stages is a key component of efficient disease control and prevention. With the increased availability of electronic health-care data and spatio-temporal analysis techniques, there is great potential to develop algorithms to enable more effective disease surveillance. However, to ensure that the algorithms are effective they need to be evaluated. The objective of this research was to develop a transparent user-friendly method to simulate spatial-temporal disease outbreak data for outbreak detection algorithm evaluation. A state-transition model which simulates disease outbreaks in daily time steps using specified disease-specific parameters was developed to model the spread of infectious diseases transmitted by person-to-person contact. The software was developed using the MapBasic programming language for the MapInfo Professional geographic information system environment. RESULTS: The simulation model developed is a generalised and flexible model which utilises the underlying distribution of the population and incorporates patterns of disease spread that can be customised to represent a range of infectious diseases and geographic locations. This model provides a means to explore the ability of outbreak detection algorithms to detect a variety of events across a large number of stochastic replications where the influence of uncertainty can be controlled. The software also allows historical data which is free from known outbreaks to be combined with simulated outbreak data to produce files for algorithm performance assessment. CONCLUSION: This simulation model provides a flexible method to generate data which may be useful for the evaluation and comparison of outbreak detection algorithm performance
Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis
Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors.
Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events.
Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness.
Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings
Situational Awareness of Influenza Activity Based on Multiple Streams of Surveillance Data Using Multivariate Dynamic Linear Model
BACKGROUND: Multiple sources of influenza surveillance data are becoming more available; however integration of these data streams for situational awareness of influenza activity is less explored. METHODS AND RESULTS: We applied multivariate time-series methods to sentinel outpatient and school absenteeism surveillance data in Hong Kong during 2004-2009. School absenteeism data and outpatient surveillance data experienced interruptions due to school holidays and changes in public health guidelines during the pandemic, including school closures and the establishment of special designated flu clinics, which in turn provided 'drop-in' fever counts surveillance data. A multivariate dynamic linear model was used to monitor influenza activity throughout epidemics based on all available data. The inferred level followed influenza activity closely at different times, while the inferred trend was less competent with low influenza activity. Correlations between inferred level and trend from the multivariate model and reference influenza activity, measured by the product of weekly laboratory influenza detection rates and weekly general practitioner influenza-like illness consultation rates, were calculated and compared with those from univariate models. Over the whole study period, there was a significantly higher correlation (rho = 0.82, p</=0.02) for the inferred trend based on the multivariate model compared to other univariate models, while the inferred trend from the multivariate model performed as well as the best univariate model in the pre-pandemic and the pandemic period. The inferred trend and level from the multivariate model was able to match, if not outperform, the best univariate model albeit with missing data plus drop-in and drop-out of different surveillance data streams. An overall influenza index combining level and trend was constructed to demonstrate another potential use of the method. CONCLUSIONS: Our results demonstrate the potential use of multiple streams of influenza surveillance data to promote situational awareness about the level and trend of seasonal and pandemic influenza activity.published_or_final_versio
Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems
A large-scale multiple surveillance system for infectious disease outbreaks has been in operation in England and Wales since the early 1990s. Changes to the statistical algorithm at the heart of the system were proposed and the purpose of this paper is to compare two new algorithms with the original algorithm. Test data to evaluate performance are created from weekly counts of the number of cases of each of more than 2000 diseases over a twenty-year period. The time series of each disease is separated into one series giving the baseline (background) disease incidence and a second series giving disease outbreaks. One series is shifted forward by twelve months and the two are then recombined, giving a realistic series in which it is known where outbreaks have been added. The metrics used to evaluate performance include a scoring rule that appropriately balances sensitivity against specificity and is sensitive to variation in probabilities near 1. In the context of disease surveillance, a scoring rule can be adapted to reflect the size of outbreaks and this was done. Results indicate that the two new algorithms are comparable to each other and better than the algorithm they were designed to replace
Accuracy of syndrome definitions based on diagnoses in physician claims
<p>Abstract</p> <p>Background</p> <p>Community clinics offer potential for timelier outbreak detection and monitoring than emergency departments. However, the accuracy of syndrome definitions used in surveillance has never been evaluated in community settings. This study's objective was to assess the accuracy of syndrome definitions based on diagnostic codes in physician claims for identifying 5 syndromes (fever, gastrointestinal, neurological, rash, and respiratory including influenza-like illness) in community clinics.</p> <p>Methods</p> <p>We selected a random sample of 3,600 community-based primary care physicians who practiced in the fee-for-service system in the province of Quebec, Canada in 2005-2007. We randomly selected 10 visits per physician from their claims, stratifying on syndrome type and presence, diagnosis, and month. Double-blinded chart reviews were conducted by telephone with consenting physicians to obtain information on patient diagnoses for each sampled visit. The sensitivity, specificity, and positive predictive value (PPV) of physician claims were estimated by comparison to chart review.</p> <p>Results</p> <p>1,098 (30.5%) physicians completed the chart review. A chart entry on the date of the corresponding claim was found for 10,529 (95.9%) visits. The sensitivity of syndrome definitions based on diagnostic codes in physician claims was low, ranging from 0.11 (fever) to 0.44 (respiratory), the specificity was high, and the PPV was moderate to high, ranging from 0.59 (fever) to 0.85 (respiratory). We found that rarely used diagnostic codes had a higher probability of being false-positives, and that more commonly used diagnostic codes had a higher PPV.</p> <p>Conclusions</p> <p>Future research should identify physician, patient, and encounter characteristics associated with the accuracy of diagnostic codes in physician claims. This would enable public health to improve syndromic surveillance, either by focusing on physician claims whose diagnostic code is more likely to be accurate, or by using all physician claims and weighing each according to the likelihood that its diagnostic code is accurate.</p
- …