86 research outputs found

    Comparison of Code-Pass-Skipping Strategies for Accelerating a JPEG 2000 Decoder

    Get PDF
    Code-Pass-Skipping allows a JPEG 2000 decoder to be accelerated by sacrificing the output precision. This paper presents an evaluation on how the speed gain can be maximized and the quality loss minimized. In particular, the scenario of rendering a 24-bit preview of a Digital Cinema Package (DCP) with the maximum permitted bitrate is examined. A comparison shows, that a new proposed strategy outperforms the reference implementation from Kakadu Software v6 by up to 1 dB. Furthermore, it is shown what speed gain can be achieved for a given acceptable quality loss

    Evaluation of GPU/CPU Co-Processing Models for JPEG 2000 Packetization

    Get PDF
    With the bottom-line goal of increasing the throughput of a GPU-accelerated JPEG 2000 encoder, this paper evaluates whether the post-compression rate control and packetization routines should be carried out on the CPU or on the GPU. Three co-processing models that differ in how the workload is split among the CPU and GPU are introduced. Both routines are discussed and algorithms for executing them in parallel are presented. Experimental results for compressing a detail-rich UHD sequence to 4 bits/sample indicate speed-ups of 200x for the rate control and 100x for the packetization compared to the single-threaded implementation in the commercial Kakadu library. These two routines executed on the CPU take 4x as long as all remaining coding steps on the GPU and therefore present a bottleneck. Even if the CPU bottleneck could be avoided with multi-threading, it is still beneficial to execute all coding steps on the GPU as this minimizes the required device-to-host transfer and thereby speeds up the critical path from 17.2 fps to 19.5 fps for 4 bits/sample and to 22.4 fps for 0.16 bits/sample

    Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity

    Get PDF
    The recently discovered population of TCRαβ+ CD4–/CD8– (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response

    The cathelicidins LL-37 and rCRAMP are associated with pathogenic events of arthritis in humans and rats

    Get PDF
    Background: In rheumatoid arthritis (RA), neutrophil granulocytes fuel inflammation and damage tissue in the joint by releasing cytotoxic agents, antimicrobial peptides, proteases and other inflammatory mediators. The human cathelicidin LL-37 has recently been implicated in the development of systemic lupus erythematosus and psoriasis. Objective: To elucidate if antimicrobial peptides (AMPs) contribute to the pathogenesis of arthritis. Methods: Expression of LL-37 was determined in synovial membranes from patients with arthritis and control subjects. Expression of the rat cathelicidin rCRAMP and defensins was characterised in joints, blood and secondary lymphoid organs during pristane-induced arthritis (PIA) in rats and in a transfer model of PIA induced by CD4 T cells. Serum samples of rats with arthritis were tested for IgG and IgM autoantibodies against rCRAMP by immunoblot and for interferon (IFNα) by ELISA. Results: Cathelicidins are strongly upregulated in RA synovial membranes and in joints from rats with arthritis as compared with healthy joints. Expression was most prominent in neutrophil granulocytes and macrophages/osteoclasts. Cathelicidin expression is also upregulated in the blood and spleen of pristane-injected rats, with strongest expression detected in activated CD62L− cells coexpressing granulocyte and monocyte markers. Pristane injection caused accumulation of low-density granulocytes in the blood. After pristane injection, the increased expression of rCRAMP coincided with higher levels of cell death, raised levels of interferon (IFN)α and development of autoantibodies. Conclusions: Our results show strong upregulation of cathelicidins and β-defensins coinciding with pathological events of arthritis. Higher expression and release of AMPs might contribute to development and/or maintenance of disease by systemic or local mechanisms

    Microbiota-Derived Propionate Modulates Megakaryopoiesis and Platelet Function

    Get PDF
    Rheumatoid arthritis (RA) is associated with an increased risk for cardiovascular events driven by abnormal platelet clotting effects. Platelets are produced by megakaryocytes, deriving from megakaryocyte erythrocyte progenitors (MEP) in the bone marrow. Increased megakaryocyte expansion across common autoimmune diseases was shown for RA, systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS). In this context, we evaluated the role of the microbial-derived short chain fatty acid (SCFA) propionate on hematopoietic progenitors in the collagen induced inflammatory arthritis model (CIA) as we recently showed attenuating effects of preventive propionate treatment on CIA severity. In vivo, propionate treatment starting 21 days post immunization (dpi) reduced the frequency of MEPs in the bone marrow of CIA and naïve mice. Megakaryocytes numbers were reduced but increased the expression of the maturation marker CD61. Consistent with this, functional analysis of platelets showed an upregulated reactivity state following propionate-treatment. This was confirmed by elevated histone 3 acetylation and propionylation as well as by RNAseq analysis in Meg-01 cells. Taken together, we identified a novel nutritional axis that skews platelet formation and function

    Dual checkpoint blockade of CD47 and LILRB1 enhances CD20 antibody-dependent phagocytosis of lymphoma cells by macrophages

    Get PDF
    Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by ‘Don´t Eat Me!’ signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ). To boost ADCP, Fc-silent antibodies against LILRB1 and LILRB2 were generated (LILRB1-IgGσ and LILRB2-IgGσ, respectively). While LILRB2-IgGσ was not effective, LILRB1-IgGσ significantly enhanced ADCP of lymphoma cell lines when combined with both rituximab and CD47-IgGσ. LILRB1-IgGσ promoted serial engulfment of lymphoma cells and potentiated ADCP by non-polarized M0 as well as polarized M1 and M2 macrophages, but required CD47 co-blockade and the presence of the CD20 antibody. Importantly, complementing rituximab and CD47-IgGσ, LILRB1-IgGσ increased ADCP of chronic lymphocytic leukemia (CLL) or lymphoma cells isolated from patients. Thus, dual checkpoint blockade of CD47 and LILRB1 may be promising to improve antibody therapy of CLL and lymphomas through enhancing ADCP by macrophages

    Physiological levels of 25‐hydroxyvitamin D₃ induce a suppressive CD4⁺ T cell phenotype not reflected in the epigenetic landscape

    Get PDF
    1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analysed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg (iTreg) polarization conditions using TGF-β. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2D3 together with TGF-β further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced

    1,25-dihydroxyvitamin-D3 but not the clinically applied marker 25-hydroxyvitamin-D3 predicts survival after stem cell transplantation

    Get PDF
    Abstract The serum level of 25-hydroxyvitamin-D3 is accepted as marker for a person’s vitamin D status but its role for the outcome of allogeneic hematopoietic stem cell transplantation (HSCT) is controversially discussed. The impact of 1,25-dihydroxyvitamin-D3 on HSCT outcome, however, has never been studied. In a discovery cohort of 143 HSCT patients we repeatedly (day −16 to 100) measured 1,25-dihydroxyvitamin-D3 and in comparison the well-established marker for serum vitamin D status 25-hydroxyvitamin-D3. Only lower 1,25-dihydroxyvitamin-D3 levels around HSCT (day −2 to 7, peritransplant) were significantly associated with higher 1-year treatment-related mortality (TRM) risk (Mann–Whitney U test, P = 0.001). This was confirmed by Cox-model regression without and with adjustment for baseline risk factors and severe acute Graft-versus-Host disease (aGvHD; unadjusted P = 0.001, adjusted P = 0.005). The optimal threshold for 1,25-dihydroxyvitamin-D3 to identify patients at high risk was 139.5 pM. Also in three replication cohorts consisting of altogether 365 patients 1,25-dihydroxyvitamin-D3 levels below 139.5 pM had a 3.3-fold increased risk of TRM independent of severe aGvHD compared to patients above 139.5 pM (Cox-model unadjusted P < 0.0005, adjusted P = 0.001). Our data highlight peritransplant 1,25-dihydroxyvitamin-D3 levels but not the commonly monitored 25-hydroxyvitamin-D3 levels as potent predictor of 1-year TRM and suggest to monitor both vitamin D metabolites in HSCT patients
    corecore