9 research outputs found

    Graphene-Mediated Light-Matter Interaction

    Get PDF
    Advances in 2D materials have opened a wealth of possibilities for the control of emission and propagation of light on length scales much smaller than the wavelength of light. Graphene, with highly-confined electrostatically tunable plasmons, provides a strong platform for explore a number of avenues. We show that graphene that can increase the luminescence of erbium by 80%, can induce population inversion in a three-level system, speed up the response time by over an order of magnitude, and has modulation depth of up to 14 dB for luminescence. We experimentally demonstrated a tunable epsilon-near-zero metamaterial with a elliptic-to-hyperbolic transition. The device had been theorized for many years and we provide the first experimental realization. We explore the properties of an isotropic tunable 2D heterostructure composed of black phosphorus, hexagonal boron nitride, and graphene. These symmetry-breaking materials create an effective permittivity that is biaxially anistropic and tunable. This material supports tunable beam steering based on propagation of energy along the hyperbolic dispersion lines.</p

    Experimental demonstration of tunable graphene-polaritonic hyperbolic metamaterial

    Get PDF
    Tuning the macroscopic dielectric response on demand holds potential for actively tunable metaphotonics and optical devices. In recent years, graphene has been extensively investigated as a tunable element in nanophotonics. Significant theoretical work has been devoted on the tuning the hyperbolic properties of graphene/dielectric heterostructures; however, until now, such a motif has not been demonstrated experimentally. Here we focus on a graphene/polaritonic dielectric metamaterial, with strong optical resonances arising from the polar response of the dielectric, which are, in general, difficult to actively control. By controlling the doping level of graphene via external bias we experimentally demonstrate a wide range of tunability from a Fermi level of E_F=0 eV to E_F=0.5 eV, which yields an effective epsilon-near-zero crossing and tunable dielectric properties, verified through spectroscopic ellipsometry and transmission measurements

    Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures

    Get PDF
    Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 ± 3% and an absolute modulation depth of 24 ± 7 mW m^(–2) V^(–1) in samples with vacuum gap distances ranging from 1 to 3 μm. The active area in the samples through which heat is transferred is ∼1 cm^2, indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials

    Experimental demonstration of tunable graphene-polaritonic hyperbolic metamaterial

    Get PDF
    Tuning the macroscopic dielectric response on demand holds potential for actively tunable metaphotonics and optical devices. In recent years, graphene has been extensively investigated as a tunable element in nanophotonics. Significant theoretical work has been devoted on the tuning the hyperbolic properties of graphene/dielectric heterostructures; however, until now, such a motif has not been demonstrated experimentally. Here we focus on a graphene/polaritonic dielectric metamaterial, with strong optical resonances arising from the polar response of the dielectric, which are, in general, difficult to actively control. By controlling the doping level of graphene via external bias we experimentally demonstrate a wide range of tunability from a Fermi level of E_F=0 eV to E_F=0.5 eV, which yields an effective epsilon-near-zero crossing and tunable dielectric properties, verified through spectroscopic ellipsometry and transmission measurements

    Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures

    Get PDF
    Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 ± 3% and an absolute modulation depth of 24 ± 7 mW m^(–2) V^(–1) in samples with vacuum gap distances ranging from 1 to 3 μm. The active area in the samples through which heat is transferred is ∼1 cm^2, indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials
    corecore