1,798 research outputs found

    Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera.

    Get PDF
    Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera

    Deliquescence Behavior of Organic/Ammonium Sulfate Aerosol

    Get PDF
    Recent studies have shown that tropospheric aerosols composed of internal mixtures of organics with sulfates are quite common with the organic composing up to 50% of the particle mass. The influences of the organics on the chemical and physical properties of the aerosol are not known. In this paper, we report the solubility of a series of dicarboxylic acids in saturated ammonium sulfate solution as a function of temperature. We also report the deliquescence relative humidity (DRH) of the pure dicarboxylic acids and of mixtures of dicarboxylic acids with ammonium sulfate. For the systems studied, we find that the presence of water-soluble dicarboxylic acids caused deliquescence to occur at a lower relative humidity (RH) than pure ammonium sulfate. In contrast, the less soluble dicarboxylic acids had no measurable effect on the deliquescence relative humidity of ammonium sulfate

    Ice Nucleation in Sulfuric Acid and Ammonium Sulfate Particles

    Get PDF
    Cirrus clouds are composed of ice particles and are expected to form in the upper troposphere when highly dilute sulfate aerosols cool and become supersaturated with respect to ice. In the laboratory we have used Fourier transform infrared spectroscopy to monitor ice nucleation from sulfate particles for relevant compositions of sulfuric acid/water and ammonium sulfate/water aerosols. Measured freezing temperatures are presented as a function of aerosol composition, and results are compared to existing aerosol data. We find that sulfuric acid solution aerosol exhibits greater supercooling than ammonium sulfate solution aerosol of similar weight percent. Ice saturation ratios based on these measurements are also reported. We find that ammonium sulfate solution aerosol exhibits a relatively constant ice saturation of S∼1.48 for ice nucleation from 232 to 222 K, while sulfuric acid solution aerosol shows an increase in ice saturation from S∼1.53 to S∼1.6 as temperature decreases from 220 K to 200 K. These high-saturation ratios imply selective nucleation of ice from sulfate aerosols

    Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging

    Get PDF
    Ultrasound molecular imaging utilizes targeted microbubbles to bind to vascular targets such as integrins, selectins, and other extracellular binding domains. After binding, these microbubbles are typically imaged using low pressures and multi-pulse imaging sequences. In this article, we present an alternative approach for molecular imaging using ultrasound which relies on superharmonic signals produced by microbubble contrast agents. Bound bubbles were insonified near resonance using a low frequency (4 MHz) and superharmonic echoes were received at high frequencies (25–30 MHz). While this approach was observed to produce declining image intensity during repeated imaging in both in vitro and in vivo experiments due to bubble destruction, the feasibility of superharmonic molecular imaging was demonstrated for transmit pressures which are sufficiently high to induce shell disruption in bound microbubbles. This approach was validated using microbubbles targeted to the αvβ3 integrin in a rat fibrosarcoma model (n=5), and combined with superharmonic images of free microbubbles to produce high contrast, high resolution 3D volumes of both microvascular anatomy and molecular targeting. Image intensity over repeated scans and the effect of microbubble diameter were also assessed in vivo, indicating that larger microbubbles yield increased persistence in image intensity. Using ultrasound-based acoustic angiography images rather than conventional B-mode ultrasound to provide the underlying anatomical information facilitates anatomical localization of molecular markers. Quantitative analysis of relationships between microvasculature and targeting information indicated that most targeting occurred within 50 µm of a resolvable vessel (>100 µm diameter). The combined information provided by these scans may present new opportunities for analyzing relationships between microvascular anatomy and vascular targets, subject only to limitations of the current mechanically-scanned system and microbubble persistence to repeated imaging at moderate mechanical indices

    3-D kinematic comparison of treadmill and overground running.

    Get PDF
    Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground

    Coordinated Multiple Cadaver Use for Minimally Invasive Surgical Training

    Get PDF
    BackgroundThe human cadaver remains the gold standard for anatomic training and is highly useful when incorporated into minimally invasive surgical training programs. However, this valuable resource is often not used to its full potential due to a lack of multidisciplinary cooperation. Herein, we propose the coordinated multiple use of individual cadavers to better utilize anatomical resources and potentiate the availability of cadaver training.MethodsTwenty-two postgraduate surgeons participated in a robot-assisted surgical training course that utilized shared cadavers. All participants completed a Likert 4-scale satisfaction questionnaire after their training session. Cadaveric tissue quality and the quality of the training session related to this material were assessed.ResultsNine participants rated the quality of the cadaveric tissue as excellent, 7 as good, 5 as unsatisfactory, and 1 as poor. Overall, 72% of participants who operated on a previously used cadaver were satisfied with their training experience and did not perceive the previous use deleterious to their training.ConclusionThe coordinated use of cadavers, which allows for multiple cadaver use for different teaching sessions, is an excellent training method that increases availability of human anatomical material for minimally invasive surgical training

    Phase Changes in Internally Mixed Maleic Acid/Ammonium Sulfate Aerosols

    Get PDF
    A temperature controlled flow tube system equipped with Fourier transform infrared (FTIR) detection of particle phase and relative humidity was used to measure the deliquescence and efflorescence of ammonium sulfate, maleic acid, and internally mixed maleic acid/ammonium sulfate particles. Our results indicate that maleic acid aerosols begin to take up water starting at a low relative humidity, ∼20%, and continue the constant uptake of water until the final deliquescence relative humidity (DRH), 89%, is reached. Internally mixed particles containing maleic acid and ammonium sulfate were found to deliquesce at a lower relative humidity (RH) than either of the pure species. Efflorescence studies indicated that while pure maleic acid particles crystallize at ∼18% RH, pure ammonium sulfate and all mixed aerosols effloresce at or just below 30% RH. Taken together, our results suggest that the presence of water-soluble organics internally mixed with ammonium sulfate aerosol could increase the range of conditions under which the aerosol is a solution

    Extensive Aerosol Optical Properties and Aerosol Mass Related Measurements During TRAMP/TexAQS 2006 – Implications for PM Compliance and Planning

    Get PDF
    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM2.5air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center
    • …
    corecore