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Abstract

Ultrasound molecular imaging utilizes targeted microbubbles to bind to vascular targets such as 

integrins, selectins, and other extracellular binding domains. After binding, these microbubbles are 

typically imaged using low pressures and multi-pulse imaging sequences. In this article, we 

present an alternative approach for molecular imaging using ultrasound which relies on 

superharmonic signals produced by microbubble contrast agents. Bound bubbles were insonified 

near resonance using a low frequency (4 MHz) and superharmonic echoes were received at high 

frequencies (25–30 MHz). While this approach was observed to produce declining image intensity 

during repeated imaging in both in vitro and in vivo experiments due to bubble destruction, the 

feasibility of superharmonic molecular imaging was demonstrated for transmit pressures which are 

sufficiently high to induce shell disruption in bound microbubbles. This approach was validated 

using microbubbles targeted to the αvβ3 integrin in a rat fibrosarcoma model (n=5), and combined 

with superharmonic images of free microbubbles to produce high contrast, high resolution 3D 

volumes of both microvascular anatomy and molecular targeting. Image intensity over repeated 

scans and the effect of microbubble diameter were also assessed in vivo, indicating that larger 

microbubbles yield increased persistence in image intensity. Using ultrasound-based acoustic 

angiography images rather than conventional B-mode ultrasound to provide the underlying 

anatomical information facilitates anatomical localization of molecular markers. Quantitative 

analysis of relationships between microvasculature and targeting information indicated that most 

targeting occurred within 50 µm of a resolvable vessel (>100 µm diameter). The combined 
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information provided by these scans may present new opportunities for analyzing relationships 

between microvascular anatomy and vascular targets, subject only to limitations of the current 

mechanically-scanned system and microbubble persistence to repeated imaging at moderate 

mechanical indices.

Keywords

microbubble; targeted imaging; angiogenesis; microvasculature; biomarker

Introduction

In contrast to anatomical imaging methods, molecular imaging reveals functional 

information about tissue pathophysiology based on the accumulation of a molecular tracer. 

However, the value of a molecular imaging technique is often greatly enhanced by 

combining it with anatomical imaging in order to visualize the distribution of the marker. 

Clinically, this approach is used in systems combining computed tomography with positron 

emission tomography (PET-CT) or single photon emission computed tomography (SPECT-

CT). These combined systems have demonstrated higher accuracy in localizing 

abnormalities, often resulting in changes in treatment plans in cancers of the lung, thyroid, 

breast, and prostate (Cerfolio et al. 2004; Tharp et al. 2004; Roach et al. 2006; Lerman et al. 

2007; Garami et al. 2012; Soyka et al. 2012). In ultrasound molecular imaging, images of 

targeted microbubble contrast agent are typically overlaid on anatomical B-mode images to 

allow visualization of the spatial distribution of markers. Due to the intravascular nature of 

microbubbles, they are particularly well-suited to the study of endothelial markers of 

disease. For this reason, many recent studies in ultrasound molecular imaging have 

investigated angiogenesis and related processes of vascular remodeling and inflammation 

(Kaufmann and Lindner 2007; Voigt 2009; Anderson et al. 2011; Inaba and Lindner 2012; 

Hyvelin et al. 2014; Wang et al. 2014).

While ultrasound possesses advantages over other molecular imaging modalities due to its 

relatively low cost, portability, and lack of ionizing radiation, it also has limited penetration 

depth at the high frequencies required to achieve sub-millimeter resolution. In addition, the 

ultrasound image providing anatomy is quite different in nature from CT or magnetic 

resonance imaging (MRI) images that provide anatomical information for PET or SPECT, as 

contrast in B-mode ultrasound images is the result of differences in acoustic backscattering 

from tissue, and depends on the size, distribution, and acoustic impedance of the scatterers. 

Ultrasound also has a limited field of view compared to whole-body imaging modalities. 

The development of microbubble contrast agents, which provide substantially higher levels 

of acoustic scattering relative to erythrocytes, has greatly enhanced the ability to use 

ultrasound to image both vascular anatomy and blood flow dynamics. Contrast-enhanced 

ultrasound (CEUS) imaging with high frequency transducers has allowed imaging of small 

vessels with resolutions on the order of a few hundred microns, providing potential for 

assessing angiogenesis and vascular remodeling with both targeted and non-targeted 

microbubbles (Ellegala et al. 2003; Leong-Poi et al. 2005; Liu et al. 2008; Willmann et al. 

2008; Willmann et al. 2010; Pysz et al. 2011; Wang et al. 2015a). High-resolution molecular 
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imaging is particularly valuable for pre-clinical imaging in small animal models and studies 

in which small anatomical locations are of interest, although high frequency contrast-

specific imaging is technically challenging to implement (Rychak et al. 2007; Foster et al. 

2009; Foster et al. 2011; Yan et al. 2012; Denbeigh et al. 2014; Liu et al. 2015).

An alternative approach to high frequency CEUS involves the use of dual-frequency 

transducers, with a low frequency transmit pulse used to excite microbubbles near their 

resonance and a high frequency element receiving only higher harmonic echoes produced by 

microbubbles (Gessner et al. 2010). Detection of these “superharmonic” signals produced by 

microbubbles with multi-frequency transducers was first reported by Bouakaz et al. 

(Bouakaz et al. 2003) and by Kruse and Ferrara (Kruse and Ferrara 2005), although these 

early investigators did not use this technology to develop the 3-D microvessel images 

demonstrated more recently by Gessner et al. (Gessner et al. 2013). The “transmit low/

receive high” dual-frequency approach has previously been utilized in molecular imaging by 

Ferrara et al. (Hu et al. 2010; Hu et al. 2013). When transmitting at 2 MHz and receiving at 

15 MHz, Hu et al. demonstrated approximately a two-fold improvement in spatial resolution 

in vitro relative to multi-pulse techniques employed by commercial scanners (Hu et al. 

2013). The use of a low transmit frequency improves the penetration depth relative to 

contrast imaging at a single high frequency. For example, at a depth of 1.5 cm and an 

attenuation of 0.2 dB/cm/MHz, two-way attenuation in a 25 MHz scan is 15 dB but is only 

8.7 dB with a 4/25 MHz dual-frequency scan. Transmitting at a lower frequency also more 

closely corresponds to the resonance frequencies of most commercially-available 

microbubble contrast agents (Doinikov et al. 2009; Faez et al. 2011; Helfield and Goertz 

2013), improving image contrast, which is vital in molecular imaging when relatively few 

microbubbles are typically present.

Using this “transmit low/receive high” approach with prototype dual-frequency, 

mechanically-steered transducers connected to a commercial ultrasound system, we have 

recently demonstrated the ability to form high resolution images of vasculature with 

resolutions of approximately 150 µm and with almost no tissue interference. We call this 

technique “acoustic angiography” due to the images’ similarity to CT or MR angiography. 

While commercial ultrasound scanners perform contrast-specific imaging within a single 

transducer bandwidth, our approach forms images using only received signals at frequencies 

at least three times higher than the transmitted frequency. Our group recently found that 

using a receiving center frequency at least three times higher than the transmit center 

frequency produces the highest contrast-to-tissue ratios, as tissue amplitudes decrease more 

rapidly than microbubbles amplitudes with increasing frequency (Lindsey et al. 2014). In 

addition, while using higher harmonics to form images (i.e. 5th rather than 3rd) may further 

reduce sensitivity, it provides the increased resolution necessary for resolving vasculature 

<300 µm in diameter. Using these 3-D imaging volumes and quantitative metrics of vascular 

signatures, we have further demonstrated the ability to distinguish between healthy and 

cancerous tissues (Gessner et al. 2012a; Shelton et al. 2015). High specificity to contrast due 

to transmitting at low frequencies and receiving at much higher frequencies allows 

suppression of tissue artifact while preserving frame rates without requiring a separate 

control image to be acquired and subtracted. This simplifies the imaging protocol and 
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eliminates artifacts due to physiological motion or misregistration of the control and contrast 

images.

Several studies have found that another means for improving the sensitivity of ultrasound 

molecular imaging is by adjusting the size distribution of the microbubble population (Talu 

et al. 2007; Sirsi et al. 2010; Streeter et al. 2010). In dual-frequency superharmonic imaging, 

we have recently observed that using a population with larger microbubbles results in 

superharmonic signals with increased amplitude (Lindsey et al. 2014). This effect arises 

because larger microbubbles are capable of producing superharmonic signals over a greater 

number of acoustic pulses (Lindsey et al. 2015).

Despite the promising resolution of dual-frequency superharmonic imaging, our own recent 

studies indicate that dual-frequency superharmonic imaging is at least partially destructive to 

microbubbles (Lindsey et al. 2015), which makes implementation of superharmonic 

molecular imaging a significant challenge. The dual-frequency transducer design is critical 

for separation of tissue and microbubble echoes, as a wide separation between transmit and 

receive bandwidths ensures that only microbubble echoes are received at the higher 

frequencies. However, the focal spot is larger for the low frequency element than the high 

frequency element. The result is that as both transducers are swept in unison to form a 2-D 

image, a stationary microbubble is subjected to multiple off-axis, low frequency transmit 

pulses before the center of the dual low- and high- frequency focus is aligned to the 

microbubble. While many commercially-available systems utilize techniques such as 

synthetic aperture processing and broad beam insonation to ensure uniform acoustic 

intensity over wide regions of interest for microbubble imaging (Brock-Fisher et al. 1996), 

the transducers utilized by these systems do not have the necessary bandwidth to perform the 

superharmonic contrast imaging enabled by the described prototype transducer.

Although the mechanical indices used in superharmonic imaging are below the maximum of 

0.8 for which safety has been evaluated for Definity® (Lantheus Medical Imaging, N. 

Billerica, MA)(Imaging 2013), our previous studies indicate that microbubble shell 

disruption is required to produce superharmonic signals (approximately 300 kPa or greater 

at 4 MHz)(Lindsey et al. 2015), which may present a challenge for molecular imaging if 

bound microbubbles might be destroyed before the superharmonic signal they produce can 

be detected. Fortunately, there is evidence that the same microbubbles can produce 

superharmonic echoes in response to multiple insonations (Kruse and Ferrara 2005; Lindsey 

et al. 2015), suggesting that it may be possible to balance production of superharmonic 

signals and microbubble destruction in such a way as to enable molecular imaging.

In this article, we describe the development of an approach for high resolution molecular 

imaging based on microbubble superharmonic echoes. This technique uses spectrally 

separated transmit and receive bandwidths to form images of bound microbubbles rather 

than the low-mechanical index multi-pulse sequences that are commonly used (Phillips 

2001). Intensity and persistence of the superharmonic signals in these images were evaluated 

through in vitro experiments in micro-cellulose tubes and in vivo imaging studies in a 

subcutaneous tumor model. When combined with a sequentially-acquired acoustic 

angiography volume, the developed approach provides simultaneous 3-D visualization of 

Shelton et al. Page 4

Ultrasound Med Biol. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both microvascular structure and molecular markers of angiogenesis with unprecedented 

resolution. While the B-mode ultrasound images which typically provide anatomical 

information in ultrasound molecular imaging are difficult to display in 3D and require an 

experienced user to understand and interpret differences between tissue types, the vascular 

anatomy provided by acoustic angiography can be easily displayed in 3D and may be readily 

interpreted by users with limited previous ultrasound experience. Finally, microvascular 

information in the acoustic angiography volume can be analyzed using metrics such as 

vascular density (Dunleavey et al. 2014) or tortuosity to quantitatively assess vascular 

remodeling (Gessner et al. 2012a; Shelton et al. 2015). When combined with molecular 

targeting information, this may provide new information regarding the spatial distribution of 

vascular biomarkers.

Materials and Methods

Acoustic angiography imaging experiments were performed with modified VisualSonics 

RMV probes and a Vevo 770 ultrasound scanner (VisualSonics, Toronto, Canada). In this 

work, modified RMV710B (25 MHz center frequency) and RMV707 (30 MHz center 

frequency) transducers were used, each with an additional 4 MHz annular element which is 

confocal to the high frequency element (Gessner et al. 2010). The low frequency element is 

used only for transmitting, while the high frequency element only receives higher harmonics 

produced by microbubbles. The two single-element transducers are mechanically steered to 

acquire a 2-D image and can be translated using a motion stage to combine multiple 2-D 

images into volumetric data.

Microbubble preparation for in vitro studies

Lipid solutions (Streeter et al. 2010) were formulated with a 9:1 molar ratio of 1,2-

distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-methoxy (polyethylene–glycol)-2000 (DSPE-PEG2000) (Avanti 

Polar Lipids, Alabaster, AL) in a solution containing propylene glycol 15% (v/v), glycerol 

5% (v/v), and phosphate-buffered saline (PBS) 80% (v/v). 1.5 mL aliquots of this lipid 

solution were placed in sealed 3 mL glass vials and the air headspace was exchanged with 

decafluorobutane (DFB) gas purchased from Fluoromed (Round Rock, TX, USA). 

Microbubbles with DFB gas cores and phospholipid shells formed spontaneously when 

agitated in a Vialmix device (Lantheus Medical Imaging, N. Billerica, MA). The 

concentration, and diameter of microbubbles in this emulsion was measured via (single 

particle) optical techniques (Accusizer 780, Particle Sizing Systems, Santa Barbara, CA, 

USA) (Satinover et al. 2014). For targeted bubbles, a biotinylated PEG was used (DSPE-

PEG2000-Biotin) (Zhao et al. 2004) to replace 50% of the DSPE-PEG2000. Microbubble 

emulsions were washed with four centrifugations, and produced a stable population of 

microbubbles with a diameter of approximately 1.4 µm (Feshitan et al. 2009).

In vitro experiments

Transducer calibration and spatial mapping of the low frequency transmit beam was 

performed with a calibrated needle hydrophone (HNA 0400, Onda Corp., Sunnyvale, CA) 

on a computerized motion stage (Newport XPS, Irvine, CA) and digitized using a digital 
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acquisition board (Signatec PDA14, Corona, CA). The hydrophone was positioned at the 

focus of the transducer and translated laterally to measure a 4 mm extent of the beam profile 

at the focal depth (15 mm for RMV 710B). In acoustic angiography the resolution is 

primarily dictated by the high frequency receiving transducer, and we have recently 

characterized axial resolution for microbubble superharmonic imaging at across a wide 

range of frequencies (Lindsey et al. 2014). Relative to the study of Hu et al. (Hu et al. 2013), 

our own data indicate that axial resolution might be expected to decrease from ~250 µm at 

frequencies of 2/15 MHz to ~170 µm at 4/25 MHz, providing slightly improved resolution, 

though contrast-to-tissue ratio is expected to decrease with increasing receiving frequency. 

Therefore, line spacing in a 2-D image is determined by the resolution of the high frequency 

element. Manufacturer-provide information on scan geometry was used to compute line 

spacing at the focus (43 µm) in order to determine the overlap of the low frequency transmit 

pulse in adjacent lines.

In vitro microbubble targeting was achieved using biotinylated microbubbles and an avidin-

coated cellulose tube. First, the 200 µm (inner diameter) cellulose tube (Spectrum Labs, 

Rancho Dominguez, CA) was infused with 100% ethanol, which was then cleared by filling 

the tube with air. Next the tube was filled with a 5 mg/mL solution of avidin (Sigma-

Aldrich, St. Louis, MO) in phosphate-buffered saline (PBS) and allowed to sit at room 

temperature for 30 minutes before being flushed with PBS and positioned in a water bath at 

the focus of the dual-frequency transducer. An infusion of 5×104 biotin-coated microbubbles 

in 300 µL of PBS was pumped through the tube at a rate of 30 µL/min (Harvard Apparatus 

PHD2000, Holliston, MA), followed by a 10 min flush of pure PBS to remove any unbound 

microbubbles. 2-D images of the bound microbubbles were acquired for 100 frames at a 

frame rate of 1 Hz at peak negative pressures of 200, 350, and 500 kPa. Then, image clips 

were exported and analyzed in ImageJ (U. S. National Institutes of Health, Bethesda, MD). 

An image of the tube prior to contrast infusion was subtracted from each set of acquired 

images to eliminate any non-microbubble artifacts, then a region of interest was defined 

around the tube to compute image intensity. Experiments were repeated in triplicate and 

results were averaged together for each transmit pressure tested. A new tube was prepared 

with a new microbubble injection for each trial.

Microbubble preparation for in vivo studies

Microbubbles targeted to the αvβ3 integrin were created with an 18:1:1 molar ratio of 

DSPC, DSPE-PEG2000, and DSPE-PEG2000-maleimide cross-linked to the peptide Cyclo-

Arg-Gly-Asp-D-Tyr-Cys (cyclic RGD, Peptides International - Louisville, KY) in 

phosphate-buffered saline (PBS) (Fisher Scientific, Pittsburgh, PA). The cyclic RGD peptide 

targets vessels expressing αvβ3 integrin, which is characteristic of angiogenic tumors 

(Ellegala et al. 2003; Leong-Poi et al. 2003; Dayton et al. 2004; Streeter et al. 2010; 

Anderson et al. 2011; Streeter et al. 2011; Hu et al. 2013).

Previous investigations of the relationship between microbubble diameter and molecular 

imaging (Streeter et al. 2010) and contrast-to-tissue ratio in acoustic angiography imaging 

(Lindsey et al. 2014) both demonstrated improved performance for bubbles having diameters 

in the range of 3–4 µm rather than 1–2 µm. Additionally, larger bubbles are likely to produce 
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superharmonic signals over a greater number of pulses than smaller bubbles (Lindsey et al. 

2015). In order to examine the effect of microbubble diameter on superharmonic imaging in 
vivo, two populations of microbubbles were prepared: a polydisperse population as 

described in our in vitro studies with a mode diameter of approximately 1.4 µm, and larger 

diameter microbubbles enriched using differential centrifugal separation (Feshitan et al. 

2009; Streeter et al. 2010) with a mode diameter of approximately 3.8 µm.

Animal care and imaging

The Fisher 344 fibrosarcoma (FSA) model was prepared as previously described (Yuan et al. 

2006). In vivo imaging occurred when tumors reached approximately 1 cm in diameter. Rats 

were anesthetized with vaporized isoflurane and oxygen, and a 24 gauge catheter was 

inserted into the tail vein. Fur was removed from the imaging region by shaving and 

chemical depilation, and ultrasound gel was applied to the skin. Body temperature was 

maintained throughout using a heated imaging stage, and rats were secured to the imaging 

platform with surgical tape to minimize motion during the study. Acquisition times were less 

than 1 minute for the molecular volume and between 1 and 2 minutes for the microvascular 

volume. All animal experiments were performed in accordance with The University of North 

Carolina at Chapel Hill Institutional Animal Care and Use Committee.

Using the same VisualSonics 770 system and prototype transducer, tumor location was first 

identified in high frequency B-mode imaging. Next, a dual-frequency image was acquired 

prior to contrast agent administration for identification of any tissue artifacts. A bolus of 

5×107 cyclic RGD microbubbles was injected through the tail-vein catheter. After a 12 

minute wait, circulating microbubbles had cleared, and 3-D images of targeted microbubbles 

were acquired in dual-frequency mode with a step size of 250 µm between 2D images to 

avoid destroying bubbles in the adjacent imaging plane. The 12 minute wait for targeting is 

similar to that used in previous ultrasound molecular imaging studies (Kaufmann et al. 2007; 

Inaba and Lindner 2012; Wang et al. 2015b) and was determined based on prior scanning of 

two animals in which the degree of free bubbles in circulation was assessed every 4 minutes 

post-injection for 28 min. To test the expected improvement due to increased microbubble 

diameter, molecular imaging scans were acquired consecutively with size sorted (larger) and 

polydisperse (smaller) microbubbles in the same animal, with any remaining bound 

microbubbles destroyed between bolus injections by performing a scan at a peak negative 

pressure of 1400 kPa. The order in which the pressures were tested was randomized in order 

mitigate any potential effects of repeated boluses, which are expected to be negligible 

(Streeter and Dayton 2013). To examine microbubble destruction over repeated imaging, 

four 3-D scans were acquired at each set of parameters (microbubble diameter, pressure). 

Following the acquisition of molecular images, conventional dual-frequency acoustic 

angiography images were acquired using a constant infusion of 1.5×108 untargeted 

microbubbles/min, a peak negative pressure of 1.2 MPa, and a step size of 100 µm between 

2D images.

Image processing and analysis

Volumetric image data of targeted microbubbles were imported into ImageJ, and background 

noise was reduced by subtracting the background using the “rolling ball” algorithm with a 

Shelton et al. Page 7

Ultrasound Med Biol. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



radius of 30 (Sternberg 1983). Tissue signal was reduced by subtracting a volume acquired 

before contrast agent injection. In MATLAB (The MathWorks Inc., Natick, MA), 

thresholding was applied to remove any remaining noise. The image intensities in 

volumetric tumor regions were calculated for each scan, and the average intensity of 

successive scans were normalized to the first scan in order to compare the relative loss of 

signal due to microbubble destruction. Acoustic angiography and molecular imaging 

volumes for the same animals were combined into a single volume in ImageJ by inserting 

blank frames into the molecular imaging volumes so that the slice spacing matched that of 

the acoustic angiography volumes, then merging the two volumes using different colors, 

with acoustic angiography data displayed in white and targeting information displayed in 

green.

For n=5 animals, individual vessels were segmented from acoustic angiography image 

volumes using centerline extraction via height ridge traversal with manually defined seed 

points (Aylward and Bullitt 2002). Coordinates of segmented vessels as well as coordinates 

and voxel intensities of the targeting sites from the molecular imaging data were read into 

MATLAB. Vessel coordinates were down-sampled to match the image spacing of the 

molecular imaging data. In order to analyze spatial relationships between resolvable vessels 

and targeted microbubble signal, distances between the targeting site and the five closest 

vessels were computed for each targeting site. Any registration artifacts due to differences in 

respiratory motion between sequential scans were assumed to be negligible. Previous studies 

indicate that the mean root-mean-square (RMS) error between two consecutive frames due 

to physiological motion is 7.2 ± 3.3 µm. Vessel diameters for these five closest vessels were 

also recorded for each targeting site.

Results

In vitro

Transmit pressure profiles were created at peak negative pressures of 200, 350, and 500 kPa 

at 4 MHz (Figure 1A) in order to visualize pressure levels incident on neighboring 

microbubbles from a single low frequency transmit event. With a mechanically-steered 

transducer, a single microbubble in the field is subject to increasing pressures from the low 

frequency element as the transducer arm moves towards the microbubble. Thus by the time 

both the peak transmit pressure and the focus of the high frequency receive element are 

aligned to the microbubble for acquisition of the imaging line, the microbubble has already 

experienced several pulses at increasing pressures. Figure 1B contains a diagram describing 

the motion of the transducer across ten imaging lines occupying 388 µm of the image in the 

lateral direction (only three transducer positions are shown instead of ten for clarity). A 

single microbubble positioned at the location of line 10 receives gradually increasing 

pressures with each transmit pulse as the transducer moves from line 1 to line 10. Figure 2 

depicts this overlapping spacing of the ten low frequency transmit pulses for the 350 kPa 

case. Vertical lines delineate the transmit line spacing of 43.1 µm and horizontal lines show 

the magnitude of negative pressure experienced by a bubble at location zero (in focus at line 

10) for preceding transmit events.
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Bound microbubbles in cellulose tubes were observed over 100 frames to assess frame-to-

frame decreases in signal intensity due to microbubble destruction by the transmit pulses 

(Figure 3). As expected, initial intensity of the targeted microbubble signal is directly related 

to the peak negative pressure of the transmit pulse. All three pressures (200, 350 and 500 

kPa, peak negative pressure) demonstrated some loss of signal from the initial transmit 

pulse, likely due to the preferential destruction of small microbubbles (Lindsey et al. 2015). 

However, observations at 200 and 350 kPa indicate relatively slow decline in microbubble 

signal, with a greater decrease in intensity observed for the 500 kPa test case. At the lowest 

pressure (200 kPa), the bound microbubble signal remained relatively stable across the 100 

transmit pulses, indicating minimal destruction. However, the intensities of the 

superharmonic echoes received by the high frequency element were low for the 200 kPa 

transmit pressure case. At the highest pressure (500 kPa), average intensity decreased 

quickly in the first few frames, and then decayed slowly over approximately frames 10–100. 

With the moderate pressure (350 kPa), the intensity decreased gradually over all 100 frames 

and exhibited greater microbubble signal than the observations at 200 and 500 kPa by frame 

3. Overall, in vitro results indicated that a balance between microbubble destruction and 

generation of broadband superharmonic signals might be achievable for bound microbubbles 

for in vivo molecular imaging.

In vivo

Imaging of microbubbles targeted to the αvβ3 integrin demonstrated little to no detectable 

signal in vivo at the low peak negative pressures examined in vitro. Therefore, the pressures 

tested were increased to non-derated values of 700, 900, and 1200 kPa. Several reasons 

account for the need for greatly increased pressures in vivo, including attenuation, small 

vessel confinement effects, and blood viscosity. For example, for an imaging depth of 15 

mm, an attenuation of 0.2 dB/cm/MHz in overlying tissues represents a loss of 1.2 dB at 4 

MHz. Superharmonic signals from the relatively few bubbles under the high frequency focus 

are also difficult to detect at the transducer, as the same attenuation of 0.2 dB/cm/MHz 

results in attenuations of 9 dB at 30 MHz. Additionally, Caskey et al. have reported that 

microbubble oscillation is constrained when bubbles are confined to smaller vessels in vivo, 

measuring a relative expansion of a factor of 4–11.5 in 200 µm-inner diameter tubes in vitro 
as compared to a mean relative expansion of 1.5 in ex vivo vessels less than 30 µm in 

diameter (Caskey et al. 2007). This may indicate higher pressures are required to produce 

superharmonic signals in small vessels. Other authors have investigated the effect of blood 

viscosity on microbubble oscillation, finding that microbubble resonance is severely altered 

in the presence of viscous damping (Khismatullin 2004; Sassaroli and Hynynen 2004).

With these higher pressures, it was possible to create in vivo images of bound microbubbles 

which could be overlaid on acoustic angiography image volumes as a reference for vascular 

structure. Note that these molecular imaging volumes could also be overlaid on B-mode 

images, as is customary in ultrasound molecular imaging. Figure 4 shows fused maximum 

intensity projections of molecular and acoustic angiography images in the lateral view (4A) 

and dorsal-ventral view (4B) of a tumor approximately 1 cm in diameter, using a 

polydisperse population of microbubbles (1–2 µm diameter) and a peak negative pressure of 

1200 kPa. The relative decrease in image intensity over four successive scans in the same 

Shelton et al. Page 9

Ultrasound Med Biol. Author manuscript; available in PMC 2017 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



five animals for both sorted or polydisperse microbubble populations is shown in Figure 5. 

During the first scan, the larger sorted microbubbles were clearly brighter than the first scan 

of the polydisperse population, but the difference between the signal from each population 

decreased through scan 4, when neither microbubble population yielded significant 

detectable signal at a transmit peak negative pressure of 1200 kPa.

In comparing image intensity for the size-sorted microbubbles at pressures of 700, 900, and 

1200 kPa in the same animal, the higher pressures were found to produce the greatest image 

intensity from bound microbubbles. Figure 6 shows example image overlays of acoustic 

angiography and molecular imaging at the three pressures tested in a single representative 

animal. At higher pressures, both the brightness of individual targeting sites and the number 

of detectable targeting sites were visibly greater. The relative image intensities of the 3 

different peak negative insonation pressures were computed across four scans until very little 

signal was detectable at any pressure, and this data is shown in Figure 7 for all 5 animals. 

The plot in Figure 7 shows that the mean image intensity in targeted microbubble images at 

700 kPa is fairly constant over four scans, although the mean image intensity value is low. 

At higher pressures, the mean initial intensity of scan 1 improved, but there was a greater 

decline in image intensity with each successive scan. The greatest targeting signal intensity 

resulted from the first scan at 1200 kPa, the highest peak negative pressure tested.

Segmentation of vessels visible in acoustic angiography images acquired with a constant 

infusion of microbubbles allowed comparison of the spatial distribution of targeted 

microbubbles and vascular structure. Following segmentation, distances from each targeting 

site to the 5 nearest vessels and the diameters of those vessels were computed in MATLAB 

(see Figure 8). The majority of targeting sites were within 50 µm of the centerline of a 

resolvable vessel, and very few targeting sites were located farther than 150 µm from a 

segmented vessel (Figure 8A). Additionally, we observed that the majority of targeting 

occurred in small vessels. Figure 8B shows that αvβ3 targeting increased as vessels 

decreased in diameter, with a decline in the percentage of targeting sites located in or near 

vessels 100–200 µm in diameter, which is approximately the resolution limit of the acoustic 

angiography images. The relationship between vessel diameter and levels of targeted 

microbubble detection may be related to purely physical implications of smaller diameter 

vessels, or to patterns of αvβ3 integrin expression.

Discussion

Bubble destruction and superharmonic molecular imaging

In this article we have demonstrated the feasibility of forming high resolution images of 

microbubbles targeted to the αvβ3 integrin using an imaging technique which forms images 

of only the superharmonic echoes of microbubbles. While this technique is known to be 

partially destructive, bound microbubbles persisted sufficiently long in vivo to allow for the 

formation of high resolution superharmonic molecular images (Figure 4). Although image 

intensity decreased rapidly with each subsequent scan (Figure 5, Figure 7), superharmonic 

echoes were detectable on the initial scan despite the fact that microbubbles had already 

been subjected to multiple pulses due to the large focal size of the low frequency transducer 

element (Figure 1–2). This partial persistence of superharmonic signals over a few pulses is 
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consistent with the in vitro studies reported here (Figure 3) and previously (Lindsey et al. 

2015). We have also observed that superharmonic molecular imaging may be enhanced by 

using a microbubble population with a slightly larger diameter, consistent with previous 

observations that larger microbubbles improve sensitivity in conventional molecular imaging 

(Talu et al. 2007; Streeter et al. 2010) and in superharmonic imaging of free bubbles 

(Lindsey et al. 2014), and that larger free microbubbles are more prone to deflation over 

several pulses relative to smaller microbubbles (Lindsey et al. 2015). While microbubble 

persistence is clearly a challenge for this technique, acquiring useful superharmonic 

molecular images is possible on at least the first acquisition and appears to be aided by the 

use of microbubbles having slightly larger diameters. In addition, the use of higher 

microbubble concentrations might produce increased targeting more similar to conventional 

ultrasound molecular imaging approaches, but the current concentration allows spatial 

comparison between molecular and microvascular imaging volumes.

Potential improvements

While superharmonic molecular images with the highest image intensity were acquired with 

the highest pressure tested (1200 kPa), opportunities may remain for further optimization of 

transmit frequencies or pressures in order to either increase sensitivity of the initial scan or 

prolong the usefulness of the images over a greater number of scans. The effects of the in 
vivo environment on microbubble oscillation have not been precisely quantified, so the peak 

negative pressure required to induce microbubble deflation or destruction in vivo are unclear. 

Previous studies have reported that microbubbles persist longer as vessel size decreases 

(Caskey et al. 2007), however greater pressures may be required to produce superharmonic 

echoes from these bubbles. This suggests that in a field of view filled with vessels of varying 

diameter, microbubble oscillation and thus received signal may depend on vessel diameter. 

Thus sensitivity to smaller vessels may not be limited merely by the presence of fewer 

microbubbles or slower reperfusion rates in these vessels.

Due to the mechanical steering of the prototype transducer, each microbubble is subjected to 

many lower pressure pulses before the receiving focus is aligned over the microbubble. 

Additionally, bound microbubbles are subject to secondary Bjerknes forces which may cause 

detachment of bound microbubbles at low MI (Garbin et al. 2011; Gessner et al. 2012b; 

Loughran et al. 2012). These forces may induce microbubble unbinding in this method due 

to lower pressure pulses acting on a microbubble before the dual focus is aligned with the 

microbubble, potentially reducing sensitivity if detached microbubbles flow out of plane 

before being detected. Both of these effects (destruction and detachment of microbubbles 

outside of the receiving focus) could be mitigated by using a transducer having transmit and 

receive foci which were more similar in size, as the lateral resolution of the high frequency 

element is 140 µm (710B) while that of the low frequency element is ~1 mm. Alternatively, 

a dual-frequency array transducer would allow all echoes to be received by the high 

frequency array even with a large transmit focus (Bouakaz et al. 2002; Stephens et al. 2006; 

Martin et al. 2014).

Use of an array would also help mitigate any effects of motion artifacts in the spatial 

comparison between vascular and molecular imaging data by allowing increased acquisition 
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rates and providing a more uniform acoustic field. However, because vessel centerlines are 

extracted using the described segmentation technique, single frame shift errors due to animal 

respiration are removed from microvasculature imaging data. This means that only the 

molecular imaging data is subject to the effects of motion artifacts. However, the fact that 

results indicate meaningful spatial relationships between vessel diameter and distance to 

targeting sites (Fig. 8) suggests that any motion effects in the molecular imaging datasets are 

sufficiently small as to permit this type of analysis with the current system.

The use of chirped excitation may be an alternative means for improving sensitivity to bound 

microbubbles, which has previously been demonstrated in contrast imaging (Borsboom et al. 

2005; Sun et al. 2006; Leavens et al. 2007; Sun et al. 2007). While this may enable 

molecular imaging of microbubbles of varying diameters at lower peak pressures, these 

pulses have not been assessed in superharmonic contrast imaging, in which the highest 

amplitude echoes are produced by microbubble destruction (Lindsey et al. 2015). This 

suggests that short pulses may be more effective for superharmonic imaging because they 

induce microbubble destruction over a smaller volume than longer pulses. Use of chirped 

pulses also depends on the ability of the transducer to transmit a pulse without distortion 

(Lindsey et al. 2015).

Value of combined molecular and vascular imaging

The combination of molecular imaging and acoustic angiography provides opportunities for 

investigating the spatial distribution of functional biomarkers and vascular structures in 

concert. Given that ultrasound molecular imaging utilizes vascular targets, combining 

ultrasound molecular imaging with angiography images mapping vascular structure provides 

the unique opportunity to analyze relationships between vascular features and molecular 

information. In this work, we have observed that cyclic RGD microbubbles targeted to the 

αvβ3 integrin were detected preferentially in smaller vessels, and that all targeting sites were 

located within 200 µm of a resolvable vessel, with the majority of targeting occurring within 

50 µm of a segmented vessel. Molecular targeting may be increased in small vessels due to 

slower blood flow velocities or the increasing similarity between microbubble and vessel 

diameters, which may improve the probability of binding (Takalkar et al. 2004; Kaufmann et 

al. 2007). Alternatively, binding in larger vessels may prove transient or more challenging 

due to detachment caused by greater shear flow, with binding efficiency in shear flow also 

dependent upon ligand concentration on the microbubble surface (Klibanov et al. 2006; Patil 

et al. 2011). Smaller vessels may also retain bubbles which detach due to either shear flow 

or ultrasound for a longer time period.

However, straightforward relationships between vessel diameter and flow rate do not hold in 

tumors due to the formation of abnormal vascular networks created by tumor angiogenesis 

(Jain 1988). The spatial distribution of integrin expression may also vary with vessel 

diameter, as previous investigations have reported that molecular targets of angiogenesis, 

such as vascular endothelial growth factor (VEGF) or the αvβ3 integrin used in this work 

may be more prevalent in small vessels undergoing active remodeling (Brooks et al. 1994). 

While the exact relationship between vessel anatomy and molecular targeting is unclear, the 
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presented approach has demonstrated an initial ability to assess the sizes of vessels in which 

targeting occurs in pre-clinical studies.

Clinical translation of the described technique would be aided by developments in both 

scanning system and contrast agent technology. While there are no fundamental limitations 

which prevent the mechanically-steered dual-frequency transducer from being used 

clinically for superharmonic imaging, a dual-frequency array transducer would allow for 

greater control over the pressure field, ensuring a more uniform point spread function over a 

larger field of view while maintaining the contrast-to-tissue ratio and spatial resolution of the 

presented images. Clinical use of ultrasound molecular imaging is presently limited by the 

lack of FDA-approved targeted microbubble contrast agents, however, clinically translatable 

contrast agents have recently been developed such as BR55 from Bracco (Pochon et al. 

2010; Pysz et al. 2010). Once targeted contrast agents are developed and approved, the 

described technique for superharmonic molecular imaging could enable ultrasound 

molecular imaging with higher resolution in all the applications currently under investigation 

including angiogenesis (Pochon et al. 2010), inflammation (Wang et al. 2013), and cancers 

of the breast (Bachawal et al. 2013), colon (Wang et al. 2015a), and prostate (Tardy et al. 

2010). Combining a higher resolution molecular image with a registered angiography-like 

image provides additional information on microvascular morphology relative to the 

previously demonstrated ultrasound molecular images for these applications, in which 

molecular images are displayed against a background B-mode image.

In addition, the ability to visualize both microvascular anatomy and molecular targeting may 

also be of clinical use by providing currently unavailable information on the growth and 

extent of an individual tumor. For example, imaging αvβ3 expression has previously been 

demonstrated using PET and SPECT in tumors of the breast and brain (Bach-Gansmo et al. 

2006; Beer et al. 2008; Schnell et al. 2009), and also using near-infrared fluorescence 

imaging in colorectal tumors (Verbeek et al. 2014). The PET imaging studies utilized an 18F-

cyclic RGD tracer and then validated imaging results using post-resection 

immunohistochemistry, finding that while αvβ3 imaging is effective at locating tumors, its 

expression is “highly variable” (Beer et al. 2008; Schnell et al. 2009). While this 

heterogeneous expression of αvβ3 and the poor spatial resolution of PET make it difficult to 

use PET alone as either a screening test or a surgical planning tool, the high resolution 3D 

vascular and targeting information provided by acoustic angiography could make for an 

excellent tool for surgical planning after initial tumor localization. In this case, the 

expression of αvβ3 on both endothelial and tumor cells, as identified in prior PET studies 

(Beer et al. 2008), could prove helpful for ensuring resection with clean margins.

Conclusions

We have presented an ultrasound-based approach for both imaging vasculature and 

molecular markers with high spatial resolution. This technique uses a prototype dual-

frequency transducer to acquire only superharmonic signals produced by microbubble 

contrast agents. Although the imaging process was observed to produce decreasing image 

brightness over time in vitro due to destruction of bound microbubbles, combinations of 

transmit pressure and frequency can be chosen which prolong microbubble persistence. 
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Under such parameters, diagnostically useful superharmonic molecular images may be 

acquired. In this study, we have demonstrated high resolution superharmonic molecular 

imaging in a rodent tumor model (fibrosarcoma) using microbubbles targeted to the αvβ3 

integrin. A second scan of free microbubbles was acquired immediately following the 

molecular scan, and the two imaging volumes were fused to provide 3D visualization of both 

microvascular anatomy and biodistribution of the αvβ3 integrin. Mapping both biomarkers 

and microvascular anatomy with high resolution provides a new method for visualizing 

molecular markers with ultrasound while using ultrasound-based angiography-like mapping 

to provide anatomical information. The combined information provided by these scans may 

present new opportunities for analyzing relationships between microvascular anatomy and 

vascular targets for microbubbles such as integrins, selectins, and other extracellular binding 

domains.
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Figure 1. 
(A) Hydrophone-measured pressure maps as a transmit beam having a peak negative 

pressure of 200 kPa (solid line), 350 kPa (dotted line), or 500 kPa (dashed line) is swept 

from left to right. (B) Motion of transducer mechanical arm for the scenario in Fig. 1A. 

Illustration of transmitted pressure experienced by a single microbubble as the mechanically 

steered transducer arm moves from some distance away from the bubble (gray) to on-axis 

steering (black). Given a line separation of 43.1 µm, 10 adjacent lines occupy a distance of 

387.9 µm, over which a single bubble is exposed to multiple pulses of gradually increasing 

pressure until the on-axis bubble experiences the nominal peak negative pressure.
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Figure 2. 
Peak negative pressures (horizontal lines) in kPa experienced by a bubble at position 0, due 

to 10 adjacent scan lines with a line spacing of 43.1 µm (illustrated by the vertical lines).
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Figure 3. 
Image intensity vs. frame number for targeted biotin microbubbles adhered to an avidin-

coated tube. Each line indicates the mean result of 3 experiments.
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Figure 4. 
(A) Fused scans of vascular anatomy acquired using untargeted (grayscale) and cyclic RGD 

microbubbles (green) in sequential scans of a subcutaneous fibrosarcoma in the same 

animal. Images are shown here in a lateral view. (B) The same data in (A) is shown in a 

dorsal-ventral view. Both scale bars represent 2 mm.
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Figure 5. 
Image intensity over 4 consecutive scans with cyclic RGD bubbles in n=5 animals at non-

derated peak negative transmit pressures of 1200 kPa for both sorted and polydisperse cyclic 

RGD microbubble populations. Each scan was normalized to its initial intensity.
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Figure 6. 
The effect of varying peak transmit pressure on received molecular imaging signal (green) is 

illustrated in a single animal in both lateral (left) and dorsal-ventral views (right). The same 

acoustic angiography data (grayscale) was used to provide vascular anatomy for all cases.
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Figure 7. 
Image intensity over 4 consecutive scans with cyclic RGD bubbles in n=5 animals with 

varying peak negative transmit pressures of 700, 900, and 1200 kPa for size-sorted 

microbubble populations. Each scan was normalized to its initial intensity.
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Figure 8. 
Histograms of (A) the distance to the 5 closest resolvable vessels and (B) the mean diameter 

of these vessels in n=5 animals indicate that most targeting occurred close to a vessel 

approximately 100–300 µm in diameter.
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