30 research outputs found

    A study on the spatial and temporal variability in airborne Betula pollen concentration in five cities in Poland using multivariate analyses

    Get PDF
    During the spring period, Betula pollen is the main cause of inhalant allergies in Poland and therefore it is impor- tant to monitor and forecast airborne pollen concentrations of this taxon. This study conducted a comparative analysis of the basic characteristics of Betula pollen seasons at the regional scale. The study was carried out from 2001 to 2016 in fi ve cities in Poland: Lublin, Warsaw, Cracow, Sosnowiec, and Szczecin. To fi nd the attri- butes of birch pollen seasons that mostly differentiated the individual cities, a general discriminant analysis (GDA) was performed, while a principal component analysis (PCA) allowed us to reduce the data space and pres- ent a scatterplot of PCA scores in order to compare pollen seasons in the individual cities. The contingency table was also analyzed to check whether there was a signi fi cant relationship between pollen counts in the studied years and cities. At most of the sites, biennial cycles of low and high pollen concentrations can be observed. Due to the high variation in seasons in each of these cities, two data groups were distinguished: Group 1 was composed of seasons with high pollen deposition (2001, 2003, 2006, 2008, 2010, 2012, 2014, 2016), and Group 2 comprising the other seasons. Multivariate analyses were performed on both these groups as well as in the entire dataset. End98, Peak Value, and Annual Total had the highest discriminant power. In Group 1, Warsaw and Sosnowiec differed the most in the investigated parameters, while Cracow and Szczecin differed the least. In both groups, most seasons with the highest pollen birch concentration were observed in Lublin, followed by Warsaw, while in Cracow, the number of such seasons was the smallest

    Enhanced triacylglycerol catabolism by carboxylesterase 1 promotes aggressive colorectal carcinoma

    Get PDF
    The ability to adapt to low-nutrient microenvironments is essential for tumor cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription factor pathway associates with advanced disease stages and shorter survival in patients with CRC. NF-κB has been shown to drive tumor-promoting inflammation, cancer cell survival, and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-κB affects the metabolic adaptations that fuel aggressive disease in patients with CRC is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-κB–regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC cell survival via cell-autonomous mechanisms that fuel fatty acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight patients with CRC. Accordingly, NF-κB drove CES1 expression in CRC consensus molecular subtype 4 (CMS4), which is associated with obesity, stemness, and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator HNF4A in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavorable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC

    Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells

    Get PDF
    Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD+ pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD+ occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity

    Reply to Gurgul-Convey and Lenzen: Cytokines, Nitric Oxide, and β-Cells

    Full text link
    interior, sextant, 200

    Differential mechanisms of inhibition of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols and NO in cellular and cell-free conditions

    No full text
    S-nitrosothiols are nitric oxide (NO)-derived molecules found in biological systems. They have been variously discussed as both NO reservoirs and as major actors in NO-dependent, but cGMP-independent, signal transduction. Although S-nitrosation of specific cysteine residues has been suggested to represent a novel redox-based signaling mechanism, the exact mechanisms of S-nitrosothiol formation under (patho)physiological conditions and the determinants of signaling specificity have not yet been established. Here we examined the sensitivity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to inhibition by S-nitrosocysteine (CysNO) and NO both intracellularly and in isolation. Bovine aortic endothelial cells (BAECs) and purified GAPDH preparations were treated with CysNO or NO, and enzymatic activity was monitored. Intracellular GAPDH was irreversibly inhibited upon CysNO administration, whereas treatment with NO resulted in a DTT-reversible inhibition of the enzyme. Purified GAPDH was inhibited by both CysNO and NO, but the inhibition pattern was diametrically opposite to that observed in the cells; CysNO-dependent inhibition was reversed with DTT, whereas NO-dependent inhibition was not. In the presence of GSH, NO inhibited purified GAPDH in a DTT-reversible way. Our data suggest that in response to CysNO treatment, cellular GAPDH undergoes S-nitrosation, which results in an irreversible inhibition of the enzyme under turnover conditions. In contrast, NO inhibits the enzyme via oxidative mechanisms that do not involve S-nitrosation and are reversible. In summary, our data show that GAPDH is a target for CysNO- and NO-dependent inhibition; however, these two agents inhibit the enzyme via different mechanisms both inside the cell and in isolation. Additionally, the differences observed between the cellular system and purified protein strongly imply that the intracellular environment dictates the mechanism of inhibition

    Effect of Nitric Oxide on Naphthoquinone Toxicity in Endothelial Cells: Role of Bioenergetic Dysfunction and Poly(ADP-ribose) Polymerase Activation

    No full text
    When produced at physiological levels, reactive oxygen species (ROS) can act as signaling molecules to regulate normal vascular function. Produced under pathological conditions, ROS can contribute to the oxidative damage of cellular components (e.g., DNA and proteins) and trigger cell death. Moreover, the reaction of superoxide with nitric oxide (NO) produces the strong oxidant peroxynitrite and decreases NO bioavailability, both of which may contribute to activation of cell death pathways. The effects of ROS generated from the 1,4-naphthoquinones alone and in combination with NO on the activation status of poly­(ADP-ribose) polymerase (PARP) and cell viability were examined. Treatment with redox cycling quinones activates PARP, and this stimulatory effect is attenuated in the presence of NO. Mitochondria play a central role in cell death signaling pathways and are a target of oxidants. We show that simultaneous exposure of endothelial cells to NO and ROS results in mitochondrial dysfunction, ATP and NAD<sup>+</sup> depletion, and cell death. Alone, NO and ROS have only minor effects on cellular bioenergetics. Further, PARP inhibition does not attenuate reduced cell viability or mitochondrial dysfunction. These results show that concomitant exposure to NO and ROS impairs energy metabolism and triggers PARP-independent cell death. While superoxide-mediated PARP activation is attenuated in the presence of NO, PARP inhibition does not modify the loss of mitochondrial function or adenine and pyridine nucleotide pools and subsequent bioenergetic dysfunction. These findings suggest that the mechanisms by which ROS and NO induce endothelial cell death are closely linked to the maintenance of mitochondrial function and not overactivation of PARP
    corecore