34 research outputs found

    Energy-Rich Mesopelagic Fishes Revealed as a Critical Prey Resource for a Deep-Diving Predator Using Quantitative Fatty Acid Signature Analysis

    Get PDF
    Understanding the diet of deep-diving predators can provide essential insight to the trophic structure of the mesopelagic ecosystem. Comprehensive population-level diet estimates are exceptionally difficult to obtain for elusive marine predators due to the logistical challenges involved in observing their feeding behavior and collecting samples for traditional stomach content or fecal analyses. We used quantitative fatty acid signature analysis (QFASA) to estimate the diet composition of a wide-ranging mesopelagic predator, the northern elephant seal (Mirounga angustirostris), across five years. To implement QFASA, we first compiled a library of prey fatty acid (FA) profiles from the mesopelagic eastern North Pacific. Given the scarcity of a priori diet data for northern elephant seals, our prey library was necessarily large to encompass the range of potential prey in their foraging habitat. However, statistical constraints limit the number of prey species that can be included in the prey library to the number of dietary FAs in the analysis. Exceeding that limit could produce non-unique diet estimates (i.e., multiple diet estimates fit the data equally well). Consequently, we developed a novel ad-hoc method to identify which prey were unlikely to contribute to diet and could, therefore, be excluded from the final QFASA model. The model results suggest that seals predominantly consumed small mesopelagic fishes, including myctophids (lanternfishes) and bathylagids (deep sea smelts), while non-migrating mesopelagic squids comprised a third of their diet, substantially less than suggested by previous studies. Our results revealed that mesopelagic fishes, particularly energy-rich myctophids, were a critical prey resource, refuting the long-held view that elephant seals are squid specialists

    New insights into the diets of harbor seals (Phoca vitulina) in the Salish Sea revealed by analysis of fatty acid signatures

    Get PDF
    Harbor seals (Phoca fvitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available informationon harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized

    Energy-Rich Mesopelagic Fishes Revealed as a Critical Prey Resource for a Deep-Diving Predator Using Quantitative Fatty Acid Signature Analysis

    Get PDF
    Understanding the diet of deep-diving predators can provide essential insight to the trophic structure of the mesopelagic ecosystem. Comprehensive population-level diet estimates are exceptionally difficult to obtain for elusive marine predators due to the logistical challenges involved in observing their feeding behavior and collecting samples for traditional stomach content or fecal analyses. We used quantitative fatty acid signature analysis (QFASA) to estimate the diet composition of a wide-ranging mesopelagic predator, the northern elephant seal (Mirounga angustirostris), across five years. To implement QFASA, we first compiled a library of prey fatty acid (FA) profiles from the mesopelagic eastern North Pacific. Given the scarcity of a priori diet data for northern elephant seals, our prey library was necessarily large to encompass the range of potential prey in their foraging habitat. However, statistical constraints limit the number of prey species that can be included in the prey library to the number of dietary FAs in the analysis. Exceeding that limit could produce non-unique diet estimates (i.e., multiple diet estimates fit the data equally well). Consequently, we developed a novel ad-hoc method to identify which prey were unlikely to contribute to diet and could, therefore, be excluded from the final QFASA model. The model results suggest that seals predominantly consumed small mesopelagic fishes, including myctophids (lanternfishes) and bathylagids (deep sea smelts), while non-migrating mesopelagic squids comprised a third of their diet, substantially less than suggested by previous studies. Our results revealed that mesopelagic fishes, particularly energy-rich myctophids, were a critical prey resource, refuting the long-held view that elephant seals are squid specialists

    A MODEL OF CHINOOK SALMON POPULATION DYNAMICS INCORPORATING SIZE-SELECTIVE EXPLOITATION AND INHERITANCE OF POLYGENIC CORRELATED TRAITS

    Get PDF
    Concern regarding the potential for selective fisheries to degrade desirable characteristics of exploited fish populations is growing worldwide. Although the occurrence of fishery-induced evolution in a wild population has not been irrefutably documented, considerable theoretical and empirical evidence for that possibility exists. Environmental conditions influence survival and growth in many species and may mask comparatively subtle trends induced by selective exploitation, especially given the evolutionarily short time series of data available from many fisheries. Modeling may be the most efficient investigative tool under such conditions. Motivated by public concern that large-mesh gillnet fisheries may be altering Chinook salmon in western Alaska, we constructed a stochastic model of the population dynamics of Chinook salmon. The model contained several individually based components and incorporated size-selective exploitation, assortative mating, size-dependent female fecundity, density-dependent survival, and the heritability of size and age. Substantial reductions in mean size and age were observed under all scenarios. Concurrently reducing directional selection and increasing spawning abundance was most effective in stimulating population recovery. Use of this model has potential to improve our ability to investigate the consequences of selective exploitation and aid development of improved management strategies to more effectively sustain fish and fisheries into the future

    Use of genetic data to infer population-specific ecological and phenotypic traits from mixed aggregations.

    No full text
    Many applications in ecological genetics involve sampling individuals from a mixture of multiple biological populations and subsequently associating those individuals with the populations from which they arose. Analytical methods that assign individuals to their putative population of origin have utility in both basic and applied research, providing information about population-specific life history and habitat use, ecotoxins, pathogen and parasite loads, and many other non-genetic ecological, or phenotypic traits. Although the question is initially directed at the origin of individuals, in most cases the ultimate desire is to investigate the distribution of some trait among populations. Current practice is to assign individuals to a population of origin and study properties of the trait among individuals within population strata as if they constituted independent samples. It seemed that approach might bias population-specific trait inference. In this study we made trait inferences directly through modeling, bypassing individual assignment. We extended a Bayesian model for population mixture analysis to incorporate parameters for the phenotypic trait and compared its performance to that of individual assignment with a minimum probability threshold for assignment. The Bayesian mixture model outperformed individual assignment under some trait inference conditions. However, by discarding individuals whose origins are most uncertain, the individual assignment method provided a less complex analytical technique whose performance may be adequate for some common trait inference problems. Our results provide specific guidance for method selection under various genetic relationships among populations with different trait distributions

    Populations and reporting groups used as baseline for Puget Sound Chinook salmon individual assignment and mixture modeling for inferring group-specific BKD infection rates.

    No full text
    <p>Populations and reporting groups used as baseline for Puget Sound Chinook salmon individual assignment and mixture modeling for inferring group-specific BKD infection rates.</p

    Estimated fecundity parameters of intercept (<i>β<sub>0</sub></i>), slope (<i>β<sub>1</sub></i>), and standard deviation (<i>σ</i>) for three reporting groups of Yukon River Chinook salmon obtained using individual assignment (IA) and Bayesian mixture modeling (BMM), with standard errors (SE) and either 95% confidence or probability intervals (CI or PI).

    No full text
    <p>Estimated fecundity parameters of intercept (<i>β<sub>0</sub></i>), slope (<i>β<sub>1</sub></i>), and standard deviation (<i>σ</i>) for three reporting groups of Yukon River Chinook salmon obtained using individual assignment (IA) and Bayesian mixture modeling (BMM), with standard errors (SE) and either 95% confidence or probability intervals (CI or PI).</p

    Estimated linear regression models of mean Yukon River Chinook salmon fecundity versus fish length for three reporting groups, (A) Upper, (B) Middle, and (C) Lower, based on the Bayesian mixture model (solid line) and individual assignments (dashed line).

    No full text
    <p>Estimated linear regression models of mean Yukon River Chinook salmon fecundity versus fish length for three reporting groups, (A) Upper, (B) Middle, and (C) Lower, based on the Bayesian mixture model (solid line) and individual assignments (dashed line).</p
    corecore