7,163 research outputs found
Nontrivial temporal scaling in a Galilean stick-slip dynamics
We examine the stick-slip fluctuating response of a rough massive
non-rotating cylinder moving on a rough inclined groove which is submitted to
weak external perturbations and which is maintained well below the angle of
repose. The experiments presented here, which are reminiscent of the Galileo's
works with rolling objects on inclines, have brought in the last years
important new insights into the friction between surfaces in relative motion
and are of relevance for earthquakes, differing from classical block-spring
models by the mechanism of energy input in the system. Robust nontrivial
temporal scaling laws appearing in the dynamics of this system are reported,
and it is shown that the time-support where dissipation occurs approaches a
statistical fractal set with a fixed value of dimension. The distribution of
periods of inactivity in the intermittent motion of the cylinder is also
studied and found to be closely related to the lacunarity of a random version
of the classic triadic Cantor set on the line.Comment: 7 pages including 6 figure
Confining potential in a color dielectric medium with parallel domain walls
We study quark confinement in a system of two parallel domain walls
interpolating different color dielectric media. We use the phenomenological
approach in which the confinement of quarks appears considering the QCD vacuum
as a color dielectric medium. We explore this phenomenon in QCD_2, where the
confinement of the color flux between the domain walls manifests, in a scenario
where two 0-branes (representing external quark and antiquark) are connected by
a QCD string. We obtain solutions of the equations of motion via first-order
differential equations. We find a new color confining potential that increases
monotonically with the distance between the domain walls.Comment: RevTex4, 5 pages, 1 figure; version to appear in Int. J. Mod. Phys.
Fluctuation-Induced Casimir Forces in Granular Fluids
We have numerically investigated the behavior of driven non-cohesive granular
media and found that two fixed large intruder particles, immersed in a sea of
small particles, experience, in addition to a short range depletion force, a
long range repulsive force. The observed long range interaction is
fluctuation-induced and we propose a mechanism similar to the Casimir effect
that generates it: the hydrodynamic fluctuations are geometrically confined
between the intruders, producing an unbalanced renormalized pressure. An
estimation based on computing the possible Fourier modes explains the repulsive
force and is in qualitative agreement with the simulations.Comment: 4 pages, 3 figures. Accepted in Phys. Rev. Letter
Magnetic states of linear defects in graphene monolayers: effects of strain and interaction
The combined effects of defect-defect interaction and of uniaxial or biaxial
strains of up to 10\% on the development of magnetic states on the
defect-core-localized quasi-one-dimensional electronic states generated by the
so-called 558 linear extended defect in graphene monolayers are investigated by
means of {\it ab initio} calculations. Results are analyzed on the basis of the
heuristics of the Stoner criterion. We find that conditions for the emergence
of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel
strains (along the defect direction) at both limits of isolated and interacting
558 defects. Parallel strains are shown to lead to two cooperative effects that
favor the emergence of itinerant magnetism: enhancement of the DOS of the
resonant defect states in the region of the Fermi level and tuning of the Fermi
level to the maximum of the related DOS peak. A perpendicular strain is
likewise shown to enhance the DOS of the defect states, but it also effects a
detunig of the Fermi level that shifts away from the maximum of the DOS of the
defect states, which inhibts the emergence of magnetic states. As a result,
under biaxial strains the stabilization of a magnetic state depends on the
relative magnitudes of the two components of strain.Comment: 9 pages 8 figure
Fatores de risco envolvidos na dermatite necrótica dos frangos de corte.
Projeto/Plano de Ação: 16.00.30.004
Oscillatory instability in a driven granular gas
We discovered an oscillatory instability in a system of inelastically
colliding hard spheres, driven by two opposite "thermal" walls at zero gravity.
The instability, predicted by a linear stability analysis of the equations of
granular hydrodynamics, occurs when the inelasticity of particle collisions
exceeds a critical value. Molecular dynamic simulations support the theory and
show a stripe-shaped cluster moving back and forth in the middle of the box
away from the driving walls. The oscillations are irregular but have a single
dominating frequency that is close to the frequency at the instability onset,
predicted from hydrodynamics.Comment: 7 pages, 4 figures, to appear in Europhysics Letter
Resistência antimicrobiana y patogenicidad de muestras de los Escherichia coli aisladas de lesiones de celulites em polos.
Projeto/Plano de Ação: 11.11.11.111
Dissipative collapse of the adiabatic piston
An adiabatic piston, separating two granular gases prepared in the same
macroscopic state, is found to eventually collapse to one of the sides. This
new instability is explained by a simple macroscopic theory which is
furthermore in qualitative agreement with hard disk molecular dynamics.Comment: 7 pages, 5 figure
- …