399 research outputs found

    The osmotic demyelination syndrome:the resilience of thalamic neurons is verified with transmission electron microscopy

    Get PDF
    The development of a murine model of osmotic demyelinating syndrome (ODS) allowed to study changes incurred in extrapontine zones of the CNS and featured neuron and glial cell changes in the relay thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) nuclei before, during and after ODS induction, and characterized without immune response. There, the neuron Wallerian-type deteriorations were verified with fine structure modifications of the neuron cell body, including some nucleus topology and its nucleolus changes. Morphologic analyses showed a transient stoppage of transcriptional activities while myelinated axons in the surrounding neuropil incurred diverse damages, previously reported. Even though the regional thalamus myelin deterioration was clearly recognized with light microscopy 248 h after osmotic recovery of ODS, ultrastructure analyses demonstrated that, at that time, the same damaged parenchyma regions contained nerve cell bodies that have already reactivated nucleus transcriptions and neuroplasm translations because peculiar accumulations of fibro-granular materials, similar to those detected in restored ODS astrocytes, were revealed in these restructuring nerve cell bodies. Their aspects suggested to be accumulations of ribonucleoproteins. The findings suggested that progressive neural function's recovery in the murine model could imitate some aspects of human ODS recovery cases.info:eu-repo/semantics/publishe

    Early phrenic motor neuron loss and transient respiratory abnormalities following unilateral cervical spinal cord contusion

    Get PDF
    Contusion-type cervical spinal cord injury (SCI) is one of the most common forms of SCI observed in patients. In particular, injuries targeting the C3-C5 region affect the pool of phrenic motor neurons (PhMNs) that innervates the diaphragm, resulting in significant and often chronic respiratory dysfunction. Using a previously described rat model of unilateral midcervical C4 contusion with the Infinite Horizon Impactor, we have characterized the early time course of PhMN degeneration and consequent respiratory deficits following injury, as this knowledge is important for designing relevant treatment strategies targeting protection and plasticity of PhMN circuitry. PhMN loss (48% of the ipsilateral pool) occurred almost entirely during the first 24 h post-injury, resulting in persistent phrenic nerve axonal degeneration and denervation at the diaphragm neuromuscular junction (NMJ). Reduced diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation were observed as early as the first day post-injury (30% of pre-injury maximum amplitude), with slow functional improvement over time that was associated with partial reinnervation at the diaphragm NMJ. Consistent with ipsilateral diaphragmatic compromise, the injury resulted in rapid, yet only transient, changes in overall ventilatory parameters measured via whole-body plethysmography, including increased respiratory rate, decreased tidal volume, and decreased peak inspiratory flow. Despite significant ipsilateral PhMN loss, the respiratory system has the capacity to quickly compensate for partially impaired hemidiaphragm function, suggesting that C4 hemicontusion in rats is a model of SCI that manifests subacute respiratory abnormalities. Collectively, these findings demonstrate significant and persistent diaphragm compromise in a clinically relevant model of midcervical contusion SCI; however, the therapeutic window for PhMN protection is restricted to early time points post-injury. On the contrary, preventing loss of innervation by PhMNs and/or inducing plasticity in spared PhMN axons at the diaphragm NMJ are relevant long-term targets

    Synthesis of Isocoumarin via PTSA-Catalyzed Annulation of Diarylalkynes

    Get PDF
    International audiencep-Toluenesulfonic acid (PTSA) in EtOH was used as a mild acid-catalyst for the annulation of various functionalized diarylalkynes under microwave irradiation. This free-metal process allowed the synthesis of a range of 3-arylsubstituted isocoumarins in good yields

    Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport.

    Get PDF
    In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.This work was supported by Alzheimer’s Research UK (ART/PG2009/2 to R.A.), MRC project grant (MR/L003813/1 to R.A., S.G.), Medical Research Council studentship (S.M.), Alzheimer’s Research UK studentship (ARUKPhD2013-13 to C.D.), Biotechnology and Biological Sciences Research Council Institute Strategic Programme Grant (M.P.C.), the Foundation for Alzheimer Research (FRA/SAO) (JPB) and the Belgian F.N.R.S. (K.A and JPB)

    Subcellular structural plasticity caused by the absence of the fast Ca²⁺ buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons

    Get PDF
    Purkinje cells (PC) control spike timing of neighboring PC by their recurrent axon collaterals. These synapses underlie fast cerebellar oscillations and are characterized by a strong facilitation within a time window of i transients were previously shown to be bigger in PC boutons of young (second postnatal week) CB-/- mice, yet IPSC mean amplitudes remained unaltered in connected CB–/– PC. Since PC spine morphology is altered in adult CB–/– mice (longer necks, larger spine head volume), we summoned that morphological compensation/adaptation mechanisms might also be induced in CB–/– PC axon collaterals including boutons. In these mice, biocytin-filled PC reconstructions revealed that the number of axonal varicosities per PC axon collateral was augmented, mostly confined to the granule cell layer. Additionally, the volume of individual boutons was increased, evidenced from z-stacks of confocal images. EM analysis of PC–PC synapses revealed an enhancement in active zone (AZ) length by approximately 23%, paralleled by a higher number of docked vesicles per AZ in CB–/– boutons. Moreover, synaptic cleft width was larger in CB–/– (23.8 ± 0.43 nm) compared to wild type (21.17 ± 0.39 nm) synapses. We propose that the morphological changes, i.e., the larger bouton volume, the enhanced AZ length and the higher number of docked vesicles, in combination with the increase in synaptic cleft width likely modifies the GABA release properties at this synapse in CB–/– mice. We view these changes as adaptation/homeostatic mechanisms to likely maintain characteristics of synaptic transmission in the absence of the fast Ca²⁺ buffer CB. Our study provides further evidence on the functioning of the Ca²⁺ homeostasome

    PART is part of Alzheimer disease

    Get PDF
    It has been proposed that tau aggregation confined to entorhinal cortex and hippocampus, with no or only minimal Aβ deposition, should be considered as a 'primary age-related tauopathy' (PART) that is not integral to the continuum of sporadic Alzheimer disease (AD). Here, we examine the evidence that PART has a pathogenic mechanism and a prognosis which differ from those of AD. We contend that no specific property of the entorhinal-hippocampal tau pathology makes it possible to predict either a limited progression or the development of AD, and that biochemical differences await an evidence base. On the other hand, entorhinal-hippocampal tau pathology is an invariant feature of AD and is always associated with its development. Rather than creating a separate disease entity, we recommend the continued use of an analytical approach based on NFT stages and Aβ phases with no inference about hypothetical disease processes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mislocalization of neuronal tau in the absence of tangle pathology in phosphomutant tau knockin mice.

    Get PDF
    Hyperphosphorylation and fibrillar aggregation of the microtubule-associated protein tau are key features of Alzheimer's disease and other tauopathies. To investigate the involvement of tau phosphorylation in the pathological process, we generated a pair of complementary phosphomutant tau knockin mouse lines. One exclusively expresses phosphomimetic tau with 18 glutamate substitutions at serine and/or threonine residues in the proline-rich and first microtubule-binding domains to model hyperphosphorylation, whereas its phosphodefective counterpart has matched alanine substitutions. Consistent with expected effects of genuine phosphorylation, association of the phosphomimetic tau with microtubules and neuronal membranes is severely disrupted in vivo, whereas the phosphodefective mutations have more limited or no effect. Surprisingly, however, age-related mislocalization of tau is evident in both lines, although redistribution appears more widespread and more pronounced in the phosphomimetic tau knockin. Despite these changes, we found no biochemical or immunohistological evidence of pathological tau aggregation in mice of either line up to at least 2 years of age. These findings raise important questions about the role of tau phosphorylation in driving pathology in human tauopathies
    • …
    corecore