81 research outputs found

    Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping

    Get PDF
    ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by a conventional solid-state reaction. The effect of acceptor doping on structural and functional properties is investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field E-c and remanent polarization P-r is observed. The piezoelectric properties are greatly increased when doping with small concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric coefficient d(33) = 134 pC/N and electromechanical coupling factor k(p) = 35%. It is verified that nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the domain wall motion is enhanced with doping, probably due to the formation of oxygen vacancies. These results strongly suggest that compositional engineering using low concentrations of acceptor doping is a good means of improving the functional properties of KNN lead-free piezoceramic system. (C) 2014 Elsevier Ltd. All rights reserved.Postprint (published version

    Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping

    Get PDF
    ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by conventional solid-state reaction. The effect of acceptor doping on structural and functional properties are investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field Ec and remanent polarization Pr is observed. The piezoelectric properties are greatly increased when doping with small concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric coefficient d33=134 pC/N and electromechanical coupling factor kp=35%. It is verified that nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the domain wall motion is enhanced with doping, probably due to by the formation of oxygen vacancies. These results strongly suggest that compositional engineering using low concentrations of acceptor doping is a good means of improving the functional properties of KNN lead-free piezoceramic system

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

    Get PDF
    The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors

    New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD)

    Get PDF

    Mechanical properties of materials for solid Oxide Cells

    No full text
    International audienc

    Epitaxial growth of silicon and germanium on (100)-oriented crystalline substrates by RF PECVD at 175 °C

    No full text
    We report on the epitaxial growth of crystalline Si and Ge thin films by standard radio frequency plasma enhanced chemical vapor deposition at 175 °C on (100)-oriented silicon substrates. We also demonstrate the epitaxial growth of silicon films on epitaxially grown germanium layers so that multilayer samples sustaining epitaxy could be produced. We used spectroscopic ellipsometry, Raman spectroscopy, transmission electron microscopy and X-ray diffraction to characterize the structure of the films (amorphous, crystalline). These techniques were found to provide consistent results and provided information on the crystallinity and constraints in such lattice-mismatched structures. These results open the way to multiple quantum-well structures, which have been so far limited to few techniques such as Molecular Beam Epitaxy or MetalOrganic Chemical Vapor Deposition
    • …
    corecore