196 research outputs found
Systemic hypothermia increases PAI-1 expression and accelerates microvascular thrombus formation in endotoxemic mice
INTRODUCTION: Hypothermia during sepsis significantly impairs patient outcome in clinical practice. Severe sepsis is closely linked to activation of the coagulation system, resulting in microthrombosis and subsequent organ failure. Herein, we studied whether systemic hypothermia accelerates microvascular thrombus formation during lipopolysacharide (LPS)-induced endotoxemia in vivo, and characterized the low temperature-induced endothelial and platelet dysfunctions. METHODS: Ferric-chloride induced microvascular thrombus formation was analyzed in cremaster muscles of hypothermic endotoxemic mice. Flow cytometry, ELISA and immunohistochemistry were used to evaluate the effect of hypothermia on endothelial and platelet function. RESULTS: Control animals at 37°C revealed complete occlusion of arterioles and venules after 759 ± 115 s and 744 ± 112 s, respectively. Endotoxemia significantly (p < 0.05) accelerated arteriolar and venular occlusion in 37°C animals (255 ± 35 s and 238 ± 58 s, respectively). This was associated with an increase of circulating endothelial activation markers, agonist-induced platelet reactivity, and endothelial P-selectin and plasminogen activator inhibitor (PAI)-1 expression. Systemic hypothermia of 34°C revealed a slight but not significant reduction of arteriolar (224 ± 35 s) and venular (183 ± 35 s) occlusion times. Cooling of the endotoxemic animals to 31°C core body temperature, however, resulted in a further acceleration of microvascular thrombus formation, in particular in arterioles (127 ± 29 s, p < 0.05 versus 37°C endotoxemic animals). Of interest, hypothermia did not affect endothelial receptor expression and platelet reactivity, but increased endothelial PAI-1 expression and, in particular, soluble PAI-1 antigen (sPAI-Ag) plasma levels. CONCLUSION: LPS-induced endotoxemia accelerates microvascular thrombus formation in vivo, most probably by generalized endothelial activation and increased platelet reactivity. Systemic hypothermia further enhances microthrombosis in endotoxemia. This effect is associated with increased endothelial PAI-1 expression and sPAI-Ag in the systemic circulation rather than further endothelial activation or modulation of platelet reactivity
Recommended from our members
Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing
Wound healing is strongly associated with the presence of a balanced content of reactive species in which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing due to its ability to deliver a beneficial mixture of reactive species directly to the cells. Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence analysis was used to illustrate and quantified microvascular features. Results: Plasma exerted significant effects on wound healing in mice, including the promotion of granulation and reepithelialization as a consequence of the migration of skin cells, the balance of antioxidant and inflammatory response, and the early induction of macrophage and neutrophil recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The cellular redox homeostasis was maintained and cells were defended from damage by a strong modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling. Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in chronic wound healing
Multiple Doses of Erythropoietin Impair Liver Regeneration by Increasing TNF-α, the Bax to Bcl-xL Ratio and Apoptotic Cell Death
BACKGROUND: Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO) has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue. METHODOLOGY: Rats undergoing 68% hepatectomy received daily either high dose (5000 IU/kg bw i.v.) or low dose (500 IU/kg bw i.v.) recombinant human EPO or equal amounts of physiologic saline. Parameters of liver regeneration and hepatocellular apoptosis were assessed at 24 h, 48 h and 5 d after resection. In addition, red blood cell count, hematocrit and serum EPO levels as well as plasma concentrations of TNF-alpha and IL-6 were evaluated. Further, hepatic Bcl-x(L) and Bax protein expression were analyzed by Western blot. PRINCIPAL FINDINGS: Administration of EPO significantly reduced the expression of PCNA at 24 h followed by a significant decrease in restitution of liver mass at day 5 after partial hepatectomy. EPO increased TNF-alpha levels and shifted the Bcl-x(L) to Bax ratio towards the pro-apoptotic Bax resulting in significantly increased hepatocellular apoptosis. CONCLUSIONS: Multiple doses of EPO after partial hepatectomy increase hepatocellular apoptosis and impair liver regeneration in rats. Thus, careful consideration should be made in pre- and post-operative recombinant human EPO administration in the setting of liver resection and transplantation
Recommended from our members
One Year Follow-Up Risk Assessment in SKH-1 Mice and Wounds Treated with an Argon Plasma Jet
Multiple evidence in animal models and in humans suggest a beneficial role of cold physical plasma in wound treatment. Yet, risk assessment studies are important to further foster therapeutic advancement and acceptance of cold plasma in clinics. Accordingly, we investigated the long-term side effects of repetitive plasma treatment over 14 consecutive days in a rodent full-thickness ear wound model. Subsequently, animals were housed for 350 days and sacrificed thereafter. In blood, systemic changes of the pro-inflammatory cytokines interleukin 1β and tumor necrosis factor α were absent. Similarly, tumor marker levels of α-fetoprotein and calcitonin remained unchanged. Using quantitative PCR, the expression levels of several cytokines and tumor markers in liver, lung, and skin were found to be similar in the control and treatment group as well. Likewise, histological and immunohistochemical analysis failed to detect abnormal morphological changes and the presence of tumor markers such as carcinoembryonic antigen, α-fetoprotein, or the neighbor of Punc 11. Absence of neoplastic lesions was confirmed by non-invasive imaging methods such as anatomical magnetic resonance imaging and positron emission tomography-computed tomography. Our results suggest that the beneficial effects of cold plasma in wound healing come without apparent side effects including tumor formation or chronic inflammation
Antithrombin Reduces Inflammation and Microcirculatory Perfusion Failure in Closed Soft-Tissue Injury and Endotoxemia
Background: Closed soft-tissue trauma leads to activation of the coagulation cascade and is often complicated by systemic inflammation and infection. Previous investigations have shown potent anti-inflammatory properties of antithrombin. We herein report on the action of antithrombin on skeletal muscle injury in experimental endotoxemia. Materials and Methods: By using a pneumatically driven computer-controlled impact device, closed soft-tissue trauma was applied on the left hind limb of pentobarbital-anesthetized rats. Six hours later, endotoxemia was induced by intraperitoneal injection of Escherichia coli]ipopolysaccharide. An equivalent volume of physiological saline was given in controls. At the same time point, treatment of animals was started by intravenous injection of antithrombin (250 IU/kg body weight) or vehicle solution. Twenty-four hours after trauma, the extensor digitorum longus muscle was microsurgically exposed and analyzed by means of high-resolution multifluorescence microscopy. Results: Traumatic soft-tissue injury with additional endotoxemia was characterized by nutritive perfusion failure (functional capillary density: 379 +/- 20 cm/cm(2)), tissue hypoxia (nicotinamide adenine dinucleotide autofluorescence: 77 +/- 4 aU), and enhanced leukocyte-endothelial cell interaction (773 +/- 35 cells/mm(2)). Therapeutic intervention with antithrombin 6 hrs after trauma restored nutritive perfusion and tissue oxygenation (functional capillary density: 469 +/- 22 cm/cm(2); nicotinamide adenine dinucleotide autofluorescence: 61 +/- 5 aU p < 0.05]) and reduced inflammatory leukocyte adherence (237 +/- 20 cells/mm(2) p < 0.05]) toward values found in nontraumatized controls (functional capillary density: 573 +/- 13 cm/cm(2); nicotinamide adenine dinucleotide autofluorescence: 56 +/- 2 aU; leukocyte adherence: 204 +/- 20 cells/mm(2)). Conclusion: Antithrombin ameliorates microcirculatory dysfunction and tissue injury in traumatized animals during endotoxemia. Furthermore, a reduced inflammatory cell response helps to prevent leukocyte-dependent secondary tissue injury. (Crit Care Med 2013; 41:867-873
Gene expression profile and synovial microcirculation at early stages of collagen-induced arthritis
A better understanding of the initial mechanisms that lead to arthritic disease could facilitate development of improved therapeutic strategies. We characterized the synovial microcirculation of knee joints in susceptible mouse strains undergoing intradermal immunization with bovine collagen II in complete Freund's adjuvant to induce arthritis (i.e. collagen-induced arthritis [CIA]). Susceptible DBA1/J and collagen II T-cell receptor transgenic mice were compared with CIA-resistant FVB/NJ mice. Before onset of clinical symptoms of arthritis, in vivo fluorescence microscopy of knee joints revealed marked leucocyte activation and interaction with the endothelial lining of synovial microvessels. This initial inflammatory cell response correlated with the gene expression profile at this disease stage. The majority of the 655 differentially expressed genes belonged to classes of genes that are involved in cell movement and structure, cell cycle and signal transduction, as well as transcription, protein synthesis and metabolism. However, 24 adhesion molecules and chemokine/cytokine genes were identified, some of which are known to contribute to arthritis (e.g. CD44 and neutrophil cytosolic factor 1) and some of which are novel in this respect (e.g. CC chemokine ligand-27 and IL-13 receptor α(1)). Online in vivo data on synovial tissue microcirculation, together with gene expression profiling, emphasize the potential role played by early inflammatory events in the development of arthritis
Microcirculatory alterations in ischemia–reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition
Experimental studies in ischemia–reperfusion and sepsis indicate that activated protein C (APC) has direct anti-inflammatory effects at a cellular level. In vivo, however, the mechanisms of action have not been characterized thus far. Intravital multifluorescence microscopy represents an elegant way of studying the effect of APC on endotoxin-induced leukocyte–endothelial-cell interaction and nutritive capillary perfusion failure. These studies have clarified that APC effectively reduces leukocyte rolling and leukocyte firm adhesion in systemic endotoxemia. Protection from leukocytic inflammation is probably mediated by a modulation of adhesion molecule expression on the surface of leukocytes and endothelial cells. Of interest, the action of APC and antithrombin in endotoxin-induced leukocyte–endothelial-cell interaction differs in that APC inhibits both rolling and subsequent firm adhesion, whereas antithrombin exclusively reduces the firm adhesion step. The biological significance of this differential regulation of inflammation remains unclear, since both proteins are capable of reducing sepsis-induced capillary perfusion failure. To elucidate whether the action of APC and antithrombin is mediated by inhibition of thrombin, the specific thrombin inhibitor hirudin has been examined in a sepsis microcirculation model. Strikingly, hirudin was not capable of protecting from sepsis-induced microcirculatory dysfunction, but induced a further increase of leukocyte–endothelial-cell interactions and aggravated capillary perfusion failure when compared with nontreated controls. Thus, the action of APC on the microcirculatory level in systemic endotoxemia is unlikely to be caused by a thrombin inhibition-associated anticoagulatory action
Effects on Bone and Muscle upon Treadmill Interval Training in Hypogonadal Male Rats
Testosterone deficiency in males is linked to various pathological conditions, including
muscle and bone loss. This study evaluated the potential of different training modalities to counteract
these losses in hypogonadal male rats. A total of 54 male Wistar rats underwent either castration
(ORX, n = 18) or sham castration (n = 18), with 18 castrated rats engaging in uphill, level, or downhill
interval treadmill training. Analyses were conducted at 4, 8, and 12 weeks postsurgery. Muscle force
of the soleus muscle, muscle tissue samples, and bone characteristics were analyzed. No significant
differences were observed in cortical bone characteristics. Castrated rats experienced decreased
trabecular bone mineral density compared to sham-operated rats. However, 12 weeks of training
increased trabecular bone mineral density, with no significant differences among groups. Muscle force
measurements revealed decreased tetanic force in castrated rats at week 12, while uphill and downhill
interval training restored force to sham group levels and led to muscle hypertrophy compared to
ORX animals. Linear regression analyses showed a positive correlation between bone biomechanical
characteristics and muscle force. The findings suggest that running exercise can prevent bone loss in
osteoporosis, with similar bone restoration effects observed across different training modalities
Angiogenesis in tissue engineering : Breathing life into constructed tissue substitutes
Long-term function of three-dimensional (3D) tissue constructs depends on adequate vascularization after implantation. Accordingly, research in tissue engineering has focused on the analysis of angiogenesis. For this purpose, 2 sophisticated in vivo models (the chorioallantoic membrane and the dorsal skinfold chamber) have recently been introduced in tissue engineering research, allowing a more detailed analysis of angiogenic dysfunction and engraftment failure. To achieve vascularization of tissue constructs, several approaches are currently under investigation. These include the modification of biomaterial properties of scaffolds and the stimulation of blood vessel development and maturation by different growth factors using slow-release devices through pre-encapsulated microspheres. Moreover, new microvascular networks in tissue substitutes can be engineered by using endothelial cells and stem cells or by creating arteriovenous shunt loops. Nonetheless, the currently used techniques are not sufficient to induce the rapid vascularization necessary for an adequate cellular oxygen supply. Thus, future directions of research should focus on the creation of microvascular networks within 3D tissue constructs in vitro before implantation or by co-stimulation of angiogenesis and parenchymal cell proliferation to engineer the vascularized tissue substitute in situ
- …