821 research outputs found

    The Origin of [O II] Emission in Recently Quenched Active Galaxy Nucleus Hosts

    Get PDF
    We have employed emission-line diagnostics derived from DEIMOS and NIRSPEC spectroscopy to determine the origin of the [O II] emission line observed in six active galactic nucleus (AGN) hosts at z ~ 0.9. These galaxies are a subsample of AGN hosts detected in the Cl1604 supercluster that exhibit strong Balmer absorption lines in their spectra and appear to be in a post-starburst or post-quenched phase, if not for their [O II] emission. Examining the flux ratio of the [N II] to Hα lines, we find that in five of the six hosts the dominant source of ionizing flux is AGN continuum emission. Furthermore, we find that four of the six galaxies have over twice the [O II] line luminosity that could be generated by star formation alone given their Hα line luminosities. This strongly suggests that AGN-excited narrow-line emission is contaminating the [O II] line flux. A comparison of star formation rates calculated from extinction-corrected [O II] and Hα line luminosities indicates that the former yields a five-fold overestimate of the current activity in these galaxies. Our findings reveal the [O II] line to be a poor indicator of star formation activity in a majority of these moderate-luminosity Seyferts. This result bolsters our previous findings that an increased fraction of AGN at high redshifts is hosted by galaxies in a post-starburst phase. The relatively high fraction of AGN hosts in the Cl1604 supercluster that show signs of recently truncated star formation activity may suggest that AGN feedback plays an increasingly important role in suppressing ongoing activity in large-scale structures at high redshift

    The Violent Youth of Bright and Massive Cluster Galaxies and their Maturation over 7 Billion Years

    Get PDF
    In this study we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z∼0.9z\sim0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z∼0.1z\sim0.1) counterparts drawn from the MCXC meta-catalog, supplemented by SDSS imaging and spectroscopy. We observed striking differences in the morphological, color, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broadband colors, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51±0.712.51\pm0.71 from z∼0.9z\sim0.9 to z∼0.1z\sim0.1. Through this and other comparisons we conclude that a combination of major merging (mainly wet or mixed) and \emph{in situ} star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3\sim3, while their average S\'ersic index increased by ∼\sim0.45 from z∼0.9z\sim0.9 to z∼0.1z\sim0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼\sim7 Gyr.Comment: Accepted for publication in MNRA

    Response to Immunization with Haemophilus influenzae Type b Polysaccharide-Pertussis Vaccine and Risk of Haemophilus Meningitis in Children with the Km(1) Immunoglobulin Allotype

    Get PDF
    In experimental animals, immune responses to certain antigens are regulated by immunoglobulin allotype-linked genes. In an effort to detect such genes in humans, we examined the antibody responses of 74 healthy children with different Km(l) or Gm(23) allotypes to a Haemophilus influenzae type b vaccine (type b polysaccharide capsule-pertussis vaccine). The anticapsular antibody responses of black or white children with the Km(1) allotype were 4.6- to 9.5-fold higher than those of children who lacked this determinant (P \u3c 0.004). No significant differences were found in antibody response with respect to the Gm(23) allotype. The frequencies of Km(l) and Gm(23) also were examined in 170 patients with Haemophilus meningitis, 71 patients with epiglottitis, and 173 control children. Km(1) was detected less frequently in black patients with meningitis (38%) than in those with epiglottitis (81%, P \u3c 0.002) or in controls (66%, P \u3c 0.0007). The relative risk of meningitis thus was 3.2-fold lower among black children with the Km(1) allotype than in those who lacked this allotype (odds ratio = 0.3, 95% confidence interval 0.2 to 0.6). However, the risk of meningitis was not decreased in white children with the Km(l) allotype (odds ratio = 1.0). There were no significant differences in the frequency of Gm(23) among the patient groups and controls. The Km(l) allotype but not the Gm(23) thus defines a subpopulation of children of both races who are high responders to this vaccine, and black children but not white children with the Km(l) allotype are at decreased risk of developing Haemophilus meningitis. These data indicate that in blacks, genes associated with Km(l) may affect immune response to a prototype type b Haemophilus vaccine, and perhaps interact with another factor related to race to affect susceptibility to Haemophilus meningitis

    The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at z∼1z\sim1

    Get PDF
    In this study we investigate 89 radio galaxies that are spectroscopically-confirmed to be members of five large scale structures in the redshift range of 0.65≤z≤0.960.65 \le z \le 0.96. Based on a two-stage classification scheme, the radio galaxies are classified into three sub-classes: active galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the properties of the three radio sub-classes and their global and local environmental preferences. We find AGN hosts are the most massive population and exhibit quiescence in their star-formation activity. The SFG population has a comparable stellar mass to those hosting a radio AGN but are unequivocally powered by star formation. Hybrids, though selected as an intermediate population in our classification scheme, were found in almost all analyses to be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a high-excitation radio galaxy (HERG) population. We discuss environmental effects and scenarios for each sub-class. AGN tend to be preferentially located in locally dense environments and in the cores of clusters/groups, with these preferences persisting when comparing to galaxies of similar colour and stellar mass, suggesting that their activity may be ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit a strong preference for intermediate-density global environments, suggesting that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA

    Star Formation Quenching in High-Redshift Large-Scale Structure: Post-Starburst Galaxies in the CI 1604 Supercluster at \u3cem\u3ez\u3c/em\u3e ~ 0.9

    Get PDF
    The Cl 1604 supercluster at z ~ 0.9 is one of the most extensively studied high-redshift large-scale structures, with more than 500 spectroscopically confirmed members. It consists of eight clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large-scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl 1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with Spitzer mid-infrared observations, we derive stellar masses for all Cl 1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star formation rates, and spatial distributions suggest that galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intracluster medium (ICM) is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense ICM produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ and [O II] equivalent widths. K+A samples may be up to ~50% incomplete due to the presence of LINERs/Seyferts, and up to ~30% of K+A galaxies could have substantial star formation activity

    Star Formation Quenching in High-redshift Large-scale Structure: Post-starburst Galaxies in the Cl1604 Supercluster at z∼0.9z \sim 0.9

    Get PDF
    The Cl1604 supercluster at z∼0.9z \sim 0.9 is one of the most extensively studied high redshift large scale structures, with more than 500 spectroscopically confirmed members. It consists of 8 clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with SpitzerSpitzer mid-infrared observations, we derive stellar masses for all Cl1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star-formation rates, and spatial distributions suggest galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intra-cluster medium is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense intra-cluster medium produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ\delta and [OII] equivalent widths. K+A samples may be up to ∼50%\sim50\% incomplete due to the presence of LINER/Seyferts and up to ∼30%\sim30\% of K+A galaxies could have substantial star formation activity.Comment: 19 pages, 13 figures, accepted by Ap

    No Evidence of Quasar-Mode Feedback in a Four-Way Group Merger at z~0.84

    Get PDF
    We report on the results of a Chandra search for evidence of triggered nuclear activity within the Cl0023+0423 four-way group merger at z ~ 0.84. The system consists of four interacting galaxy groups in the early stages of hierarchical cluster formation and, as such, provides a unique look at the level of processing and evolution already under way in the group environment prior to cluster assembly. We present the number counts of X-ray point sources detected in a field covering the entire Cl0023 structure, as well as a cross-correlation of these sources with our extensive spectroscopic database. Both the redshift distribution and cumulative number counts of X-ray sources reveal little evidence to suggest that the system contains X-ray luminous active galactic nuclei (AGNs) in excess to what is observed in the field population. If preprocessing is under way in the Cl0023 system, our observations suggest that powerful nuclear activity is not the predominant mechanism quenching star formation and driving the evolution of Cl0023 galaxies. We speculate that this is due to a lack of sufficiently massive nuclear black holes required to power such activity, as previous observations have found a high late-type fraction among the Cl0023 population. It may be that disruptive AGN-driven outflows become an important factor in the preprocessing of galaxy populations only during a later stage in the evolution of such groups and structures when sufficiently massive galaxies (and central black holes) have built up, but prior to hydrodynamical processes stripping them of their gas reservoirs.Comment: Published in ApJ

    The Evolution and Environments of X-ray Emitting Active Galactic Nuclei in High-Redshift Large-Scale Structures

    Get PDF
    We use deep Chandra imaging and an extensive optical spectroscopy campaign on the Keck 10-m telescopes to study the properties of X-ray point sources in five large-scale structures at redshifts of z ~ 0.7-0.9. We first study X-ray point sources using the statistical measure of cumulative source counts, finding that the measured overdensities are consistent with previous results, but we recommend caution in overestimating the precision of the technique. Optical spectroscopy of objects matched to X-ray point sources confirms a total of 27 AGN within the five structures, and we find that their host galaxies tend to be located away from dense cluster cores. More than 36% of host galaxies are located in the `green valley', which suggests they are a transitional population. Based on analysis of OII and Hd line strengths, the average spectral properties of the AGN host galaxies in all structures indicate either on-going star formation or a starburst within ~ 1 Gyr, and the host galaxies are younger than the average galaxy in the parent population. These results indicate a clear connection between starburst and nuclear activity. We use composite spectra of the spectroscopically confirmed members in each structure to separate them based on a measure of the overall evolutionary state of their constituent galaxies. We define structures as having more evolved populations if their average galaxy has lower EW(OII) and EW(Hd). The AGN in the more evolved structures have lower rest-frame 0.5-8 keV X-ray luminosities (all below 10^43.3 erg s^-1) and longer times since a starburst than those in the less evolved structures, suggesting that the peak of both star formation and AGN activity has occurred at earlier times. With the wide range of evolutionary states and timeframes in the structures, we use our results to analyze the evolution of X-ray AGN and evaluate potential triggering mechanisms.Comment: 29 pages, 13 figure

    Inflammatory biomarker changes and their correlation with Framingham cardiovascular risk and lipid changes in antiretroviral-naive HIV-infected patients treated for 144 weeks with abacavir/lamivudine/atazanavir with or without ritonavir in ARIES.

    Get PDF
    Propensity for developing coronary heart disease (CHD) is linked with Framingham-defined cardiovascular risk factors and elevated inflammatory biomarkers. Cardiovascular risk and inflammatory biomarkers were evaluated in ARIES, a Phase IIIb/IV clinical trial in which 515 antiretroviral-naive HIV-infected subjects initially received abacavir/lamivudine + atazanavir/ritonavir for 36 weeks. Subjects who were virologically suppressed by week 30 were randomized 1:1 at week 36 to either maintain or discontinue ritonavir for an additional 108 weeks. Framingham 10-year CHD risk scores (FRS) and risk category o
    • …
    corecore