564 research outputs found

    Beyond the Standard models of particle physics and cosmology

    Get PDF
    The modern Standard cosmological model of inflationary Unvierse and baryosynthesis deeply involves particle theory beyond the Standard model (BSM). Inevitably, models of BSM physics lead to cosmological scenarios beyond the Standard cosmological paradigm. Scenarios of dark atom cosmology in the context of puzzles of direct and indirect dark matter searches, of clusters of massive primordial black holes as the source of gravitational wave signals and of antimatter globular cluster as the source of cosmic antihelium are discussed.Comment: Prepared for Proceedings of XXI Bled Workshop "What comes beyond the Standard models?

    Meer eigen verantwoordelijkheid in ouderenzorg: wensen en mogelijkheden

    Get PDF
    External research reportInstituut Fiscale en Economische vakke

    Arterial CO2 pressure changes during hypercapnia are associated with changes in brain parenchymal volume

    Get PDF
    The Monro-Kellie hypothesis (MKH) states that volume changes in any intracranial component (blood, brain tissue, cerebrospinal fluid) should be counterbalanced by a co-occurring opposite change to maintain intracranial pressure within the fixed volume of the cranium. In this feasibility study, we investigate the MKH application to structural magnetic resonance imaging (MRI) in observing compensating intracranial volume changes during hypercapnia, which causes an increase in cerebral blood volume. Seven healthy subjects aged from 24 to 64 years (median 32), 4 males and 3 females, underwent a 3-T three-dimensional T1-weighted MRI under normocapnia and under hypercapnia. Intracranial tissue volumes were computed. According to the MKH, the significant increase in measured brain parenchymal volume (median 6.0 mL; interquartile range 4.5, 8.5; p = 0.016) during hypercapnia co-occurred with a decrease in intracranial cerebrospinal fluid (median -10.0 mL; interquartile range -13.5, -6.5; p = 0.034). These results convey several implications: (i) blood volume changes either caused by disorders, anaesthesia, or medication can affect outcome of brain volumetric studies; (ii) besides probing tissue displacement, this approach may assess the brain cerebrovascular reactivity. Future studies should explore the use of alternative sequences, such as three-dimensional T2-weighted imaging, for improved quantification of hypercapnia-induced volume changes

    The association between frailty and MRI features of cerebral small vessel disease

    Get PDF
    Frailty is a common syndrome in older individuals that is associated with poor cognitive outcome. The underlying brain correlates of frailty are unclear. The aim of this study was to investigate the association between frailty and MRI features of cerebral small vessel disease in a group of non-demented older individuals. We included 170 participants who were classified as frail (n = 30), pre-frail (n = 85) or non-frail (n = 55). The association of frailty and white matter hyperintensity volume and shape features, lacunar infarcts and cerebral perfusion was investigated by regression analyses adjusted for age and sex. Frail and pre-frail participants were older, more often female and showed higher white matter hyperintensity volume (0.69 [95%-CI 0.08 to 1.31], p = 0.03 respectively 0.43 [95%-CI: 0.04 to 0.82], p = 0.03) compared to non-frail participants. Frail participants showed a non-significant trend, and pre-frail participants showed a more complex shape of white matter hyperintensities (concavity index: 0.04 [95%-CI: 0.03 to 0.08], p = 0.03; fractal dimensions: 0.07 [95%-CI: 0.00 to 0.15], p = 0.05) compared to non-frail participants. No between group differences were found in gray matter perfusion or in the presence of lacunar infarcts. In conclusion, increased white matter hyperintensity volume and a more complex white matter hyperintensity shape may be structural brain correlates of the frailty phenotype

    Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients - a randomized controlled trial

    Get PDF
    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on post-operative FRC of cardiac surgical patients. This was a randomized controlled trial of patients after elective coronary artery bypass graft and/or valve surgery admitted to the intensive care unit (ICU) of a university hospital. Patients were randomly assigned to a "routine MH group" (MH was performed within 30 minutes after admission to the ICU and every 6 hours thereafter, and before tracheal extubation), or a "control group" (MH was performed only if perceptible (audible) sputum was present in the larger airways causing problems with mechanical ventilation, or if oxygen saturation (SpO2) dropped below 92%). The primary endpoint was the reduction of FRC from the day before cardiac surgery to one, three, and five days after tracheal extubation. Secondary endpoints were SpO2 (at similar time points) and chest radiograph abnormalities, including atelectasis (at three days after tracheal extubation). A total of 100 patients were enrolled. Patients in the routine MH group showed a decrease of FRC on the first post-operative day to 71% of the pre-operative value, versus 57% in the control group (P = 0.002). Differences in FRC became less prominent over time; differences between the two study groups were no longer statistically significant at Day 5. There were no differences in SpO2 between the study groups. Chest radiographs showed more abnormalities (merely atelectasis) in the control group compared to patients in the routine MH group (P = 0.002). MH partly prevents the reduction of FRC in the first post-operative days after cardiac surgery. Netherlands Trial Register (NTR): NTR1384. http://www.trialregister.n

    Accuracy and repeatability of joint sparsity multi-component estimation in MR Fingerprinting

    Get PDF
    MR fingerprinting (MRF) is a promising method for quantitative characterization of tissues. Often, voxel-wise measurements are made, assuming a single tissue-type per voxel. Alternatively, the Sparsity Promoting Iterative Joint Non-negative least squares Multi-Component MRF method (SPIJN-MRF) facilitates tissue parameter estima-tion for identified components as well as partial volume segmentations. The aim of this paper was to evaluate the accuracy and repeatability of the SPIJN-MRF parameter estimations and partial volume segmentations. This was done (1) through numerical simulations based on the BrainWeb phantoms and (2) using in vivo acquired MRF data from 5 subjects that were scanned on the same week-day for 8 consecutive weeks. The partial volume segmen-tations of the SPIJN-MRF method were compared to those obtained by two conventional methods: SPM12 and FSL. SPIJN-MRF showed higher accuracy in simulations in comparison to FSL-and SPM12-based segmentations: Fuzzy Tanimoto Coefficients (FTC) comparing these segmentations and Brainweb references were higher than 0.95 for SPIJN-MRF in all the tissues and between 0.6 and 0.7 for SPM12 and FSL in white and gray matter and between 0.5 and 0.6 in CSF. For the in vivo MRF data, the estimated relaxation times were in line with literature and minimal variation was observed. Furthermore, the coefficient of variation (CoV) for estimated tissue volumes with SPIJN-MRF were 10.5% for the myelin water, 6.0% for the white matter, 5.6% for the gray matter, 4.6% for the CSF and 1.1% for the total brain volume. CoVs for CSF and total brain volume measured on the scanned data for SPIJN-MRF were in line with those obtained with SPM12 and FSL. The CoVs for white and gray mat-ter volumes were distinctively higher for SPIJN-MRF than those measured with SPM12 and FSL. In conclusion, the use of SPIJN-MRF provides accurate and precise tissue relaxation parameter estimations taking into account intrinsic partial volume effects. It facilitates obtaining tissue fraction maps of prevalent tissues including myelin water which can be relevant for evaluating diseases affecting the white matter.Radiolog
    • …
    corecore