48 research outputs found

    Crystalline Cluster Model For Ionic Solids: Nacl

    Get PDF
    A crystalline cluster model for ionic crystals is presented, in the large context of the self-consistent-field multiple-scattering method, by imposing that the cluster potential has the same features as the crystal potential. The model is particularly investigated with respect to NaCl, and the results are compared with those of a conventional cluster calculation. It is seen that the main features of the electronic structure emerge from the occupied cluster states and the obtained results of our model provide a good interpretation of experimentally observed properties, e.g., the experimental one-electron spectrum. © 1979 The American Physical Society.2083415342

    Cross Sections For Rotational Excitation Of Ch4 By 320-ev Electrons

    Get PDF
    We report calculated differential, integral, and momentum-transfer cross sections for rotational excitation of CH4 by electron impact in the 320-eV energy range. These cross sections were derived from fixed-nuclei scattering amplitudes obtained using the Schwinger multichannel method. Our results represent the first rotational excitation cross sections obtained for a polyatomic molecule using entirely ab initio procedures. The cross sections agree well with those of earlier model-potential calculations. A comparison of these calculated cross sections with available experimental data is in general encouraging, but some discrepancies remain. © 1989 The American Physical Society.40105577558

    Cross Sections And Photoelectron Asymmetry Parameters For Photoionization Of H2o

    Get PDF
    The iterative Schwinger variational method is used to obtain cross sections and photoelectron asymmetry parameters for photoionization of the three outermost valence orbitals (1b1, 3a1, and 1b2) of H2O for photon energies from near threshold to 50 eV. A comparison of these calculated results with available experimental data is encouraging. © 1990 American Institute of Physics.9242362236

    A Study Of The Ground States And Ionization Energies Of H2, C2, N2, F2, And Co Molecules By The Variational Cellular Method

    Get PDF
    Self-consistent calculations for the ground state potential curves and ionization energies are reported for the molecules H2, C2, N2, F2, and CO, using the recent proposed variational cellular method. For all these molecules the results are quite good. The calculated binding energies, equilibrium interatomic distances, and energy ionization spectra are in excellent agreement with the available experimental findings. © 1979 American Institute of Physics.71124923493

    Studies Of The Photoionization Cross Sections Of Ch4

    Get PDF
    We present cross sections and asymmetry parameters for photoionization of the 1t2 orbital of CH4 using static-exchange continuum orbitale of CH4 + to represent the photoelectron wave function. The calculations are done in the fixed-nuclei approximation at a single internuclear geometry. To approximate the near-threshold behavior of these cross sections, we assumed that the photoelectron spectrum is a composite of three electronic bands associated with the Jahn-Teller components of the distorted ion. The resulting cross sections reproduce the sharp rise seen at threshold in the experimental data and are in good agreement with experiment at higher energy. The agreement between the calculated and measured photoelectron asymmetry parameters is, however, less satisfactory. © 1988 American Institute of Physics.8952998300

    Application Of The Method Of Continued Fractions To Multichannel Studies On Electronic Excitation Of H2 By Electron Impact

    Get PDF
    In the present work, the method of continued fractions at a five-channel close-coupling level of approximation is applied to study the low-energy electron-impact excitation in linear molecules. Particularly, cross sections for the X1Σg +→b3Σ u +,X1Σg +→a3Σg +, and X1Σg +→c3Πu transitions in H2 in the (15-40)-eV energy range are reported. As in our early two-state studies, no orthogonality constraint between the bound and continuum orbitals is imposed and the one-electron exchange terms are considered explicitly. In general, our calculated cross sections are in good agreement with the results obtained by the four-state Kohn variational method. Comparison between our calculated results with available experimental data is encouraging. ©2001 The American Physical Society.63316Pitchford, L., McKoy, V., Chutjian, A., Trajmar, S., (1986) Proceedings of the Meeting of the Fourth International Swarm and the Inelastic Electron-Molecule Collisions Symposium, , Swarm Studies and Inelastic Electron-Molecule Collisions, edited by L. Pitchford, V. McKoy, A. Chutjian, and S. Trajmar Springer-Verlag, New YorkBaluja, K.L., Noble, C.J., Tennyson, J., (1985) J. Phys. B, 18, pp. L851Schneider, B.I., Collins, L.A., (1985) J. Phys. B, 18, pp. L857Lima, M.A.P., Gibson, T.L., Huo, W.M., McKoy, V., (1985) J. Phys. B, 18, pp. L865Pritchard, H.P., McKoy, V., Lima, M.A.P., (1990) Phys. Rev. A, 41, p. 546Rescigno, T.N., Schneider, B.I., (1992) Phys. Rev. A, 45, p. 2894Sun, Q., Winstead, C., McKoy, V., Lima, M.A.P., (1992) J. Chem. Phys., 96, p. 3531Lee, M.-T., Fujimoto, M.M., Kroin, T., Iga, I., (1996) J. Phys. B, 29, pp. L425Lee, M.-T., Fujimoto, M.M., Iga, I., (1998) J. Mol. Struct.: THEOCHEM, 432, p. 197Branchett, S.E., Tennyson, J., Morgan, L.A., (1990) J. Phys. B, 23, p. 4625Branchett, S.E., Tennyson, J., Morgan, L.A., (1991) J. Phys. B, 24, p. 3479Parker, S.D., McCurdy, C.W., Rescigno, T.N., Lengsfield III, B.H., (1991) Phys. Rev. A, 43, p. 3514Sartori, C.S., Lima, M.A.P., (1995) Scientific Program and Abstract of Contributed Papers, XIX ICPEAC, p. 28. , edited by J. B. A. Mitchell, J. W. McConkey, and C. E. Brion Whistler, CanadaLee, M.-T., Iga, I., Fujimoto, M.M., Lara, O., (1995) J. Phys. B, 28, pp. L299Lee, M.-T., Iga, I., Fujimoto, M.M., Lara, O., (1995) J. Phys. B, 28, p. 3325Horacek, J., Sasakawa, T., (1983) Phys. Rev. A, 28, p. 2151Horacek, J., Sasakawa, T., (1984) Phys. Rev. A, 30, p. 2274Fano, U., Dill, D., (1972) Phys. Rev. A, 6, p. 185Fliflet, A.W., McKoy, V., (1980) Phys. Rev. A, 21, p. 1863Goddard III, W.A., Hunt, W.J., (1974) Chem. Phys. Lett., 24, p. 464Huzinaga, S., (1965) J. Chem. Phys., 42, p. 1293Kolos, W., Roothaan, C.C.J., (1960) Rev. Mod. Phys., 32, p. 219Lima, M.A.P., Gibson, T.L., McKoy, V., Huo, W.M., (1988) Phys. Rev. A, 38, p. 4527Khakoo, M.A., Trajmar, S., (1986) Phys. Rev. A, 34, p. 146Nishimura, H., Danjo, A., (1986) J. Phys. Soc. Jpn., 55, p. 303

    Stokes Parameters And Rovibrationally Resolved Cross Sections For The X1∑g +(v = 0, N = 1) → D3iiu -(v = 0, N = 1) Excitation In H2

    Get PDF
    We report for the first time the calculation of Stokes parameters and state-to-state rovibrationally resolved differential cross sections for the excitation X1∑g +(v = 0, N = 1) → d3IIu -(v = 0, N = 1) in H2 by electron impact at 25 eV. Comparison with the only available experimental data is encouraging.71111701170

    Electron Collisions With Ammonia And Formamide In The Low- And Intermediate-energy Ranges

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)We report an investigation on electron collisions with two nitrogen-containing compounds, namely ammonia (NH3) and formamide (NH2CHO). For ammonia, both theoretical and experimental differential, integral, and momentum-transfer cross sections, as well as calculated grand-total and total absorption cross sections, are reported in the 50-500 eV incident energy range. Calculated results of various cross sections are also reported for energies below 50 eV. Experimentally, angular distributions of the scattered electrons were measured using a crossed electron beam-molecular beam geometry and then converted to absolute differential cross sections using the relative flow technique. Absolute integral and momentum-transfer cross sections for elastic e - ammonia scattering were also derived from the measured differential cross sections. For formamide, only theoretical cross sections are presented in the 1-500 eV incident energy range. A single-center-expansion technique combined with the method of Padé was used in our calculations. For both targets, our calculated cross sections are compared with the present measured data and with the theoretical and experimental data available in the literature and show generally good agreement. Moreover, for formamide, two shape resonances located at 3.5 eV and 15 eV which correspond to the continuum 2A'' and 2A' scattering symmetries, respectively, are identified. The former can be associated to the 2B1 shape resonance in formaldehyde located at around 2.5 eV, whereas the latter can be related to the 2E resonance in ammonia at about 10 eV. Such correspondence is very interesting and so supports the investigation on electron interaction with small building blocks, instead of with larger biomolecules.906CAPES; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; FAPESP; Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Boudaïffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L., (2000) Science, 287, p. 1658. , SCIEAS 0036-8075Huels, M.A., Boudaïffa, B., Cloutier, P., Hunting, D., Sanche, L., (2003) J. Am. Chem. Soc., 125, p. 4467. , JACSAT 0002-7863Sugohara, R.T., Homem, M.G.P., Sanches, I.P., De Moura, A.F., Lee, M.T., Iga, I., (2011) Phys. Rev. A, 83, p. 032708. , PLRAAN 1050-2947Lee, M.-T., De Souza, G.L.C., Machado, L.E., Brescansin, L.M., Dos Santos, A.S., Lucchese, R.R., Sugohara, R.T., Iga, I., (2012) J. Chem. Phys., 136, p. 114311. , JCPSA6 0021-9606De Souza, G.L.C., Lee, M.-T., Sanches, I.P., Rawat, P., Iga, I., Dos Santos, A.S., Machado, L.E., Lucchese, R.R., (2010) Phys. Rev. A, 82, p. 012709. , PLRAAN 1050-2947Sugohara, R.T., Homem, M.G.P., Iga, I., De Souza, G.L.C., Machado, L.E., Ferraz, J.R., Dos Santos, A.S., Lee, M.-T., (2013) Phys. Rev. A, 88, p. 022709. , PLRAAN 1050-2947Sato, T., Shibata, F., Goto, T., (1986) Chem. Phys., 108, p. 147. , CMPHC2 0301-0104Brüche, E., (1927) Ann. Phys. (Leipzig), 83, p. 1065. , ANPYA2 0003-3804Sueoka, O., Mori, S., (1984) J. Phys. Soc. Jpn., 53, p. 2491. , JUPSAU 0031-9015Szmytkowski, C., Maciag, K., Karwarsz, G., Filipović, D., (1989) J. Phys. B, 22, p. 525. , JPAPEH 0953-4075Zecca, A., Karwasz, G.P., Brusa, R.S., (1992) Phys. Rev. A, 45, p. 2777. , PLRAAN 1050-2947García, G., Manero, F., (1996) J. Phys. B, 29, p. 4017. , JPAPEH 0953-4075Ariyasinghe, W.M., Wijeratne, T., Palihawadana, P., (2004) Nucl. Instrum. Meth. B, 217, p. 389Jones, N.C., Field, D., Lunt, S.L., Ziesel, J.P., (2008) Phys. Rev. A, 78, p. 042714. , PLRAAN 1050-2947Rao, M.V.V.S., Srivastava, S.K., (1992) J. Phys. B, 25, p. 2175. , JPAPEH 0953-4075Hayashi, H., (1981), Institute of Plasma Physics, Nagoya University, Japan, Report No. IPPJ-AM-19, (unpublished)Pack, J.I., Voshall, R.E., Phelps, A.V., (1962) Phys. Rev., 127, p. 2084. , PHRVAO 0031-899XAltshuler, S., (1957) Phys. Rev., 107, p. 114. , PHRVAO 0031-899XBen Arfa, M., Tronc, M., (1988) J. Chim. Phys., 85, p. 889Furlan, M., Hubin-Franskin, M.-J., Delwiche, J., Collin, J.E., (1990) J. Chem. Phys., 92, p. 213. , JCPSA6 0021-9606Alle, D.T., Gulley, R.J., Buckman, S.J., Brunger, M.J., (1992) J. Phys. B, 25, p. 1533. , JPAPEH 0953-4075Harshbarger, W.R., Skerbele, A., Lassettre, E.N., (1971) J. Chem. Phys., 54, p. 3784. , JCPSA6 0021-9606Gulley, R.J., Brunger, M.J., Buckman, S.J., (1992) J. Phys. B: At. Mol. Opt. Phys., 25, p. 2433. , JPAPEH 0953-4075Gianturco, F.A., Jain, A., (1986) Phys. Rep., 143, p. 347. , PRPLCM 0370-1573Pritchard, H.P., Lima, M.A.P., McKoy, V., (1989) Phys. Rev. A, 39, p. 2392. , 0556-2791Gianturco, F., (1991) J. Phys. B: At. Mol. Opt. Phys., 24, p. 4627. , JPAPEH 0953-4075Rescigno, T.N., Lengsfield, B.H., McCurdy, C.W., Parker, S.D., (1992) Phys. Rev. A, 45, p. 7800. , PLRAAN 1050-2947Ribeiro, E.M.S., Machado, L.E., Lee, M.-T., Brescansin, L.M., (2001) Comput. Phys. Commun., 136, p. 117. , CPHCBZ 0010-4655Munjal, H., Baluja, K., (2007) J. Phys. B, 40, p. 1713. , JPAPEH 0953-4075Jain, A.K., Tripathi, A.N., Jain, A., (1989) Phys. Rev. A, 39, p. 1537. , 0556-2791Joshipura, K.N., Vinodkumar, M., Patel, U.M., (2001) J. Phys. B, 34, p. 509. , JPAPEH 0953-4075Yuan, J., Zhang, Z., (1992) Phys. Rev. A, 45, p. 4565. , PLRAAN 1050-2947Limbachiya, C., Vinodkumar, M., Mason, N., (2011) Phys. Rev. A, 83, p. 042708. , PLRAAN 1050-2947Maljković, J.B., Blanco, F., García, G., Milosavljević, A.R., (2012) Nucl. Instrum. Methods, Phys. Res. B, 279, p. 124. , NIMBEU 0168-583XHollis, J.M., Lovas, F.J., Remijian, A., Jewell, P.R., Ilushin, V., Kleiner, I., (2006) Astrophys. J. Lett., 643, p. L25. , AJLEEY 0004-637XBettega, M.H.F., (2010) Phys. Rev. A, 81, p. 062717. , PLRAAN 1050-2947Wang, Y.-F., Tian, S.X., (2012) Phys. Rev. A, 85, p. 012706. , PLRAAN 1050-2947Gupta, D., Naghma, R., Antony, B., (2014) Mol. Phys., 112, p. 1201. , MOPHAM 0026-8976Srivastava, S.K., Chutjian, A., Trajmar, S., (1975) J. Chem. Phys., 63, p. 2659. , JCPSA6 0021-9606Iga, I., Lee, M.T., Homem, M.G.P., Machado, L.E., Brescansin, L.M., (2000) Phys. Rev. A, 61, p. 022708. , PLRAAN 1050-2947Rawat, P., Iga, I., Lee, M.T., Brescansin, L.M., Homem, M.G.P., Machado, L.E., (2003) Phys. Rev. A, 68, p. 052711. , PLRAAN 1050-2947Iga, I., Sanches, I.P., Srivastava, S.K., Mangan, M., (2001) Int. J. Mass Spectrom., 208, p. 159. , IMSPF8 1387-3806Homem, M.G.P., Iga, I., Sugohara, R.T., Sanches, I.P., Lee, M.T., (2011) Rev. Sci. Instrum., 82, p. 013109Jansen, R.H.J., De Heer, F.J., Luyken, H.J., Van Wingerden, B., Blaauw, H.J., (1976) J. Phys. B, 9, p. 185. , JPAMA4 0022-3700Dubois, R.D., Rudd, M.E., (1976) J. Phys. B, 9, p. 2657. , JPAMA4 0022-3700Rawat, P., Homem, M.G.P., Sugohara, R.T., Sanches, I.P., Iga, I., De Souza, G.L.C., Dos Santos, A.S., Lee, M.-T., (2010) J. Phys. B, 43, p. 225202. , JPAPEH 0953-4075Ferraz, J.R., Dos Santos, A.S., De Souza, G.L.C., Zanelato, A.I., Alves, T.R.M., Lee, M.-T., Brescansin, L.M., Machado, L.E., (2013) Phys. Rev. A, 87, p. 032717. , PLRAAN 1050-2947Gianturco, F.A., Lucchese, R.R., Sanna, N., (1995) J. Chem. Phys., 102, p. 5743. , JCPSA6 0021-9606Edmonds, A.R., (1960) Angular Momentum and Quantum Mechanics, , (Princeton University Press, Princeton, NJ)Padial, N.T., Norcross, D.W., (1984) Phys. Rev. A, 29, p. 1742. , 0556-2791Lee, M.-T., Iga, I., Machado, L.E., Brescansin, L.M., Castro E A, Y., Sanches, I.P., De Souza, G.L.C., (2007) J. Electron Spectrosc. Relat. Phenom., 155, p. 14. , JESRAW 0368-2048Staszewska, G., Schwenke, D.W., Truhlar, D.G., (1984) Phys. Rev. A, 29, p. 3078. , 0556-2791Hara, S., (1967) J. Phys. Soc. Jpn., 22, p. 710. , JUPSAU 0031-9015Frisch, M.J., (2004) Gaussian 03, Revision C. 02, , (Gaussian Inc., Wallingford, CT)http://cccbdb.nist.govBurke, P.G., Chandra, N., Gianturco, F.A., (1972) J. Phys. B, 5, p. 2212. , JPAMA4 0022-3700Machado, L.E., Brescansin, L.M., Iga, I., Lee, M.-T., (2005) Eur. Phys. J. D, 33, p. 193. , EPJDF6 1434-6060Brescansin, L.M., Machado, L.E., Lee, M.-T., Cho, H., Park, Y.S., (2008) J. Phys. B, 41, p. 185201. , JPAPEH 0953-4075Itikawa, Y., (1974) At. Data Nucl. Data Tables, 14, p. 1Kim, Y.-K., Rudd, M.E., (1994) Phys. Rev. A, 50, p. 3954. , PLRAAN 1050-2947Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Montgomery, J.A., (1993) J. Comput. Chem., 14, p. 1347. , JCCHDD 0192-8651Khakoo, M.A., Blumer, J., Keane, K., Campbell, C., Silva, H., Lopes, M.C.A., Winstead, C., Bettega, M.H.F., (2008) Phys. Rev. A, 77, p. 042705. , PLRAAN 1050-2947Goumans, T.P.M., Gianturco, F.A., Sebastianelli, F., Baccarelli, I., Rivail, J.L., (2009) J. Chem. Theory Comput., 5, p. 217. , 1549-9618Gallup, G.A., (2013) J. Chem. Phys., 139, p. 104308. , 0021-960

    Effect Of Cooperative Atomic Interactions On Photon Statistics In A Two-photon Laser

    No full text
    The effects of cooperative atomic interactions on photon statistics in a single mode as well as two-mode two-photon lasers are studied using the equation of motion for the reduced-density operator for the field. The steady-state solution of this equation of motion is used to determine the photon number distribution. The importance of the cooperative effects is discussed. © 1981 The American Physical Society.2341893189
    corecore