211 research outputs found

    Influence of anthropogenic emissions on tropospheric ozone and its precursors over the Indian tropical region during a monsoon

    Get PDF
    An emission inventory of ozone precursors developed for the year 1991 and 2001 is used in a Chemistry-Transport Model (MOZART) to examine the tropospheric changes in ozone and its precursors that have occurred during the 1990s in the geographical region of India in response to enhanced human activities. The maximum variation in ozone concentration near the surface is found to be around 5-10 ppbv. It reaches 5-7% in the lower part of the free troposphere and 3-5% in the upper troposphere. The maximum decadal increase in CO and NOx is about 50-70 ppbv (10-18%) and 0.5-1.5 ppbv (20-50%), respectively in the boundary layer. However, in most of the troposphere, the relative magnitude reduces with height and becomes less then 5% above 10 km. The variation in some of the volatile organic compounds is found to be significant

    Earth's Future: Navigating the science of the Anthropocene

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102722/1/eft27.pd

    The response of middle atmospheric ozone to solar UV irradiance variations with a period of 27 days

    Get PDF
    A one-dimensional photochemical-dynamical-radiative time-dependent model was used to study the response of middle atmospheric temperature and ozone to solar UV irradiance variations with the period of 27 days. The model solar UV O(x), HO(x), NO(x), and CIO(x)families and modeled solar UV variations. The amplitude of the primary temperature response to the solar UV variation is plus 0.4 K at 85-90 km with a phase lag of about 6 days. A secondary maximum response of plus 0.3 K at 45-50 km appears with a phase lag of 1 day. There is a maximum positive ozone response to the 27-day solar UV oscillation of 2.5 percent at 80-90 km with a phase lag of about 10 days after the solar irradiance maximum. At 70 km the ozone response is about 1.2 percent and is out of phase with the solar variation. In the upper stratosphere (40-50 km) the relative ozone variation is small, about 0.2 percent to 0.3 percent, and there is a negative phase of about 4 days between the ozone and solar oscillations. These oscillations are in phase in the middle stratosphere (35-40 km) where there is again a maximum relative response of about 0.6 percent. The reasons for these ozone amplitude and phase variations are discussed

    Implicaciones del cambio climático en la calidad del aire

    Get PDF

    Outcome predictors for treatment success with 5% lidocaine medicated plaster in low back pain with neuropathic components and neuropathic pain after surgical and nonsurgical trauma

    Get PDF
    Five percent lidocaine medicated plaster has been proven efficacious for the symptomatic relief of neuropathic pain in diverse pain conditions which might be attributed to a common localized symptomatology in these indications, possibly with common predictors of treatment success. To discuss potential symptoms and other factors predicting response to treatment with lidocaine plaster for the indications of low back pain with neuropathic components and neuropathic pain after surgical and nonsurgical trauma, 44 pain specialists from 17 countries attended a two-day conference meeting in December 2009. Discussions were based on the retrospective analysis of case reports (sent in by participants in the four weeks prior to the meeting) and the practical experience of the participants. The results indicate some predictors for success with 5% lidocaine medicated plaster for the two indications. Localized pain, hyperalgesia and/or allodynia, and other positive sensory symptoms, such as dysesthesia, were considered positive predictors, whereas widespread pain and negative sensory symptoms were regarded as negative predictors. Paresthesia, diagnosis, and site of pain were considered to be of no predictive value. Common symptomatology with other neurologic pathologies suggests that treatment of localized neuropathic pain symptoms with the plaster can be considered across different neuropathic pain indications

    Error induced by neglecting subgrid chemical segregation due to inefficient turbulent mixing in regional chemical-transport models in urban environments

    Get PDF
    We employed direct numerical simulations to esti- mate the error on chemical calculation in simulations with re- gional chemical-transport models induced by neglecting sub- grid chemical segregation due to inefficient turbulent mixing in an urban boundary layer with strong and heterogeneously distributed surface emissions. In simulations of initially seg- regated reactive species with an entrainment-emission con- figuration with an A–B–C second-order chemical scheme, urban surface emission fluxes of the homogeneously emit- ted tracer A result in a very large segregation between the tracers and hence a very large overestimation of the effec- tive chemical reaction rate in a complete-mixing model.The article processing charges for this open- access publication were covered by the Max Planck SocietyPostprint (published version

    Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Get PDF
    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOxdue to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere

    Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems

    Get PDF
    Widespread mobilization of nitrogen into the atmosphere from industry, agriculture, and biomass burning and its subsequent deposition have the potential to alleviate nitrogen limitation of productivity in terrestrial ecosystems, and may contribute to enhanced terrestrial carbon uptake. To evaluate the importance of the spatial distribution of nitrogen deposition for carbon uptake and to better quantify its magnitude and uncertainty NOy-N deposition fields from five different three-dimensional chemical models, GCTM, GRANTOUR, IMAGES, MOGUNTIA, and ECHAM were used to drive NDEP, a perturbation model of terrestrial carbon uptake. Differences in atmospheric sources of NOx-N, transport, resolution, and representation of chemistry, contribute to the distinct spatial patterns of nitrogen deposition on the global land surface; these differences lead to distinct patterns of carbon uptake that vary between 0.7 and 1.3 Gt C yr−1 globally. Less than 10% of the nitrogen was deposited on forests which were most able to respond with increased carbon storage because of the wide C:N ratio of wood as well as its long lifetime. Addition of NHx-N to NOy-N deposition, increased global terrestrial carbon storage to between 1.5 and 2.0 Gt C yr−1, while the “missing terrestrial sink” is quite similar in magnitude. Thus global air pollution appears to be an important influence on the global carbon cycle. If N fertilization of the terrestrial biosphere accounts for the “missing” C sink or a substantial portion of it, we would expect significant reductions in its magnitude over the next century as terrestrial ecosystems become N saturated and O3 pollution expands

    Report of the 1988 2-D Intercomparison Workshop, chapter 3

    Get PDF
    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models
    corecore