168 research outputs found

    Temporal and spatial characterization of a pulsed gas jet by a compact high-speed high-sensitivity second-harmonic interferometer

    Get PDF
    A compact modular high-speed high-sensitivity second-harmonic interferometer is used to characterize a pulsed gas jet. The temporal evolution of the line-integrated gas density is measured with a resolution of 1 μs revealing detailed information on its dynamics. The actual radial gas density distribution in the jet is obtained applying the Abel's inversion method. The sensitivity of the interferometer is 1 mrad, and its robustness, compactness and modularity make the instrument suitable for practical application. Possible use of the instrument in monitoring cluster formation, and phase-dispersion microscopy is discussed

    Optical diagnostics for density measurement in high-quality laser-plasma electron accelerators

    Get PDF
    Implementation of laser-plasma-based acceleration stages in user-oriented facilities requires the definition and deployment of appropriate diagnostic methodologies to monitor and control the acceleration process. An overview is given here of optical diagnostics for density measurement in laser-plasma acceleration stages, with emphasis on well-established and easily implemented approaches. Diagnostics for both neutral gas and free-electron number density are considered, highlighting real-time measurement capabilities. Optical interferometry, in its various configurations, from standard two-arm to more advanced common-path designs, is discussed, along with spectroscopic techniques such as Stark broadening and Raman scattering. A critical analysis of the diagnostics presented is given concerning their implementation in laser-plasma acceleration stages for the production of high-quality GeV electron bunches

    Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield

    Get PDF
    An investigation on the productivity of silicon nanoparticles by picosecond laser ablation in water is presented. A systematic experimental study is performed as function of the laser wave length, fluence and ablation time. In case of ablation at 1064 nm silicon nanoparticles with a mean diameter of 40 nm are produced. Instead, ablation at 355 nm results in nanoparticles with a mean diameter of 9 nm for short ablation time while the mean diameter decreases to 3 nm at longer ablation time. An original model based on the in-situ ablation/photo-fragmentation physical process is developed, and it very well explains the experimental productivity findings. There ported phenomenological model has a general validity, and it can be applied to analyze pulsed laser ablation in liquid in order to optimize the process parameters for higher productivity. Finally, an outlook is given towards gram per hour yield of ultra-small silicon nanoparticles. (C) 2014 Optical Society of Americ

    3D scaffold fabrication by mask projection excimer laser stereolithography

    Get PDF
    The production of 3D scaffolds with well-controlled architecture at the micrometer-scale is a fundamental issue for the advancement of tissue engineering towards applications in health care. Stereolithography is a highly versatile and accurate technique to fabricate 3D scaffolds with controlled architectures. Here, a scalable stereolithography method combining mask projection with excimer laser is reported. Its capability is showcased by a variety of mm-sized 3D biodegradable scaffolds patterned with a spatial resolution well-suited for tissue engineering applications. The presented method offers a concrete possibility to scale-up stereolithography-based production of 3D scaffolds to be used in regenerative medicine with potentially high-impact on health care. (C) 2014 Optical Society of Americ

    Simple and effective graphene laser processing for neuron patterning application

    Get PDF
    Astraightforward fabrication technique to obtain patterned substrates promoting ordered neuron growth is presented. Chemical vapor deposition (CVD) single layer graphene (SLG) was machined by means of single pulse UV laser ablation technique at the lowest effective laser fluence in order to minimize laser damage effects. Patterned substrates were then coated with poly-D-lysine by means of a simple immersion in solution. Primary embryonic hippocampal neurons were cultured on our substrate, demonstrating an ordered interconnected neuron pattern mimicking the pattern design. Surprisingly, the functionalization is more effective on the SLG, resulting in notably higher alignment for neuron adhesion and growth. Therefore the proposed technique should be considered a valuable candidate to realize a new generation of highly specialized biosensor

    Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications

    Get PDF
    Heavy-metal-free semiconductor material like Silicon Nanoparticle (Si-NPs) is attracting scientists because of their diverse applications in biomedical field. In this work, pulsed laser ablation of silicon in aqueous solution is employed to generate Si-NPs in one step avoiding use of chemical precursors. Characterization by absorption, electron and photoluminescence analysis proves the generation of luminescent Si-NPs. The productivity rate of Si-NPs is investigated by Inductively Coupled Plasma Spectrometry. Furthermore, Si-NPs quantum yield and confocal microscopy studies corroborate the potential use of these biocompatible Si-NPs for imaging applications

    Modification of wetting properties of laser-textured surfaces by depositing triboelectrically charged Teflon particles

    Get PDF
    Hydrophilic laser-textured silicon wafers with natural oxide surfaces were rendered hydrophobic by depositing electrostatically charged submicrometer Teflon particles, a process termed as triboelectric Teflon adhesion. Silicon surfaces were micro-textured (∼5 μm) by laser ablation using a nanosecond pulsed UV laser. By varying laser fluence, micro-texture morphology of the wafers could be reproduced and well controlled. Wetting properties of the triboelectrically charged Teflon-deposited surfaces were studied by measuring apparent static water contact angles and water contact angle hysteresis as a function of substrate roughness and the amount of Teflon deposited. A similar study was also performed on various micro-textured silicon carbide surfaces (sandpapers). If the average substrate roughness is between 15 and 60 μm, superhydrophobic surfaces can be easily formed by Teflon deposition with water contact angle hysteresis less than 8°. This environmentally benign solvent-free process is a highly efficient, rapid, and inexpensive way to render contact-charged rough surfaces hydrophobic or superhydrophobic

    Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid

    Get PDF
    Ultra small silicon nanoparticles (Si-NPs) with narrow size distribution are prepared in a one step process by UV picosecond laser ablation of silicon bulk in liquid. Characterization by electron microscopy and absorption spectroscopy proves Si-NPs generation with an average size of 2 nm resulting from an in situ photofragmentation effect. In this context, the current work aims to explore the liquid medium (water and toluene) effect on the Si-NPs structure and on the optical properties of the colloidal solution. Si-NPs with high pressure structure (s.g. Fm3m) and diamond-like structure (s.g. Fd3m), in water, and SiC moissanite 3C phase (s.g. F3m) in toluene are revealed by the means of High-Resolution TEM and HAADF-STEM measurements. Optical investigations show that water-synthesized Si-NPs have blue-green photoluminescence emission characterized by signal modulation at a frequency of 673 cm−1 related to electron–phonon coupling. The synthesis in toluene leads to generation of Si-NPs embedded in the graphitic carbon–polymer composite which has intrinsic optical properties at the origin of the optical absorption and luminescence of the obtained colloidal solution
    • …
    corecore